一级做a毛片免费视频,黑人在线播放,色婷婷99精品视频,国产精品所毛片视频

《完全平方和差公式》教學反思

時間:2024-09-26 07:01:12 教學反思 我要投稿
  • 相關(guān)推薦

《完全平方和差公式》教學反思

  作為一位到崗不久的教師,教學是重要的工作之一,教學反思能很好的記錄下我們的課堂經(jīng)驗,怎樣寫教學反思才更能起到其作用呢?下面是小編整理的《完全平方和差公式》教學反思 ,希望對大家有所幫助。

《完全平方和差公式》教學反思

《完全平方和差公式》教學反思 1

  公式法進行因式分解,除了逆用平方差公式之外,還有兩個相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

  逆用完全平方公式進行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍。或等號右邊記作:首平方,尾平方,2倍之積中間放。

  有了前邊學習完全平方公式為基礎(chǔ),逆用完全平方公式進行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結(jié)果”,但對學生來說,還是相當困難的。

  逆用完全平方公式進行因式分解的`步驟可分三步:

  1、寫成“首平方,尾平方,2倍之積中間放”的形式。

  2、按公式寫出“兩項和的平方”的形式,即因式分解。

  3、兩項和中能合并同類項的合并。

  例題及練習的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。

  1、a、b代表單獨單項式,如:

  (1)m2—6m+9

 。2)4a2—4ab+b2

  2、a、b代表多項式,如:

 。1)(a+2b)2—8a(a+2b)+16a2

 。2)4(x+y)2+25—20(x+y)

  在此要有“整體思想”的意識,注意:相同部分作為一個整體然后再套用公式。

  3、先提取公因式,再用完全平方和(或差)公式如:

  (1)ay2—2a2y+a3

 。2)16xy2—9x2y—y2

  4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:

  —m2+2mn—n2(2)3a2+6a+27

  盡管課前進行了充分的準備工作,但是學生作業(yè)中仍暴露出許多問題,如部分學生直接感到無從下手。

《完全平方和差公式》教學反思 2

  完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點,才能正確地讓公式更好地幫助我們進行簡單計算。

  要學好這部分,首先要注意掌握:

  一、公式本身:(a+b)2=a2+2ab+b2

  文字敘述:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

  二、公式的結(jié)構(gòu)特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍。或等號右邊記作:首平方,尾平方,2倍之積中間放。

  三、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時,要有“整體思想”的觀念。

  其次要注意易錯點:

  一、易錯寫:(a+b)2=a2+b2

  許多學生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個問題,我首先利用分地的故事引入,第一個農(nóng)夫分得a2+b2,第二個分得(a+b)2,然后讓同學們對比2個代數(shù)式,通過各種方法說明這兩者是不同的,比如計算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的`幾何意義),因而加深理解完全平方公式,并借此進行強化訓練。雖然還有極個別學生出現(xiàn)2項的情況,但絕大部分明白了2倍之積中間放的意義。

  二、兩個公式中的符號易混:課堂上進行了教學的改進,把2個公式(a+b)2與(a—b)2并作一個公式來處理。為了避免符號上出現(xiàn)混亂,把2個公式的符號特點進行觀察,得出同號得正,異號得負的結(jié)論。由此應(yīng)對兩項式的平方的符號問題,也省去了一些變號的煩惱。

  三、兩公式靈活運用

  在一些實際問題中,有些題目不能直接運用公式,需要一步轉(zhuǎn)化才可以。如計算:

 。1)(y—x)(x—y)(2)(x+y)(—x—y)

《完全平方和差公式》教學反思 3

  完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點,才能正確地讓公式更好地幫助我們進行簡單計算。

  要學好這部分,首先要注意掌握:

  1、公式本身:(a+b)2=a2+2ab+b2

  文字敘述:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

  2、公式的結(jié)構(gòu)特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項詩式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍;虻忍栍疫呌涀鳎菏灼椒剑财椒,2倍之積中間放。

  3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時,要有“整體思想”的觀念。

  其次要注意易錯點:

  1、易錯寫:(a+b)2=a2+b2

  許多學生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個問題,我首先利用分地的故事引入,第一個農(nóng)夫分得a2+b2,第二個分得(a+b)2,然后讓同學們對比2個代數(shù)式,通過各種方法說明這兩者是不同的,比如計算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進行強化訓練。雖然還有極個別學生出現(xiàn)2項的情況,但絕大部分明白了2倍之積中間放的意義。

  2、兩個公式中的符號易混:課堂上進行了教學的改進,把2個公式(a+b)2與(a-b)2并作一個公式來處理。為了避免符號上出現(xiàn)混亂,把2個公式的符號特點進行觀察,得出同號得正,異號得負的結(jié)論。由此應(yīng)對兩項式的平方的符號問題,也省去了一些變號的煩惱。

  3、兩公式靈活運用

  在一些實際問題中,有些題目不能直接運用公式,需要一步轉(zhuǎn)化才可以。如計算:

 。1)(y-x)(x-y)(2)(x+y)(-x-y)

  2、《乘法公式——平方差公式》教學反思

  本課的學習目的主要是熟練掌握整式的運算,并且這些知識是以后學習分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學習物理、化學等學科及其他科學技術(shù)不可或缺的數(shù)學工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學工具的重要作用。因此,在教學安排上,我選擇從學生熟悉的求多邊形面積入手,遵循從感性認識上升為理性思維的認知規(guī)律,得出抽象的概念,并在多項式乘法的基礎(chǔ)上,再次推導公式,使原本枯燥的數(shù)學概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學生學習的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學生應(yīng)用知識解決問題的能力,從而達到較好的授課效果。

  數(shù)學是一門抽象的學科,但數(shù)學是來源于實際生活的。因此,數(shù)學教育的目的是將數(shù)學運用到實際生活中去,讓學生深切感受到數(shù)學是有價值的科學,來源于生活,是其他科學的基礎(chǔ)。本節(jié)公式中字母的含義對學生來講很抽象,是本節(jié)的難點,也是學生運用公式解決實際問題的最大障礙,通過鞏固練習,讓學生逐步體會,為今后學習其他乘法公式做好準備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習中,已經(jīng)開始滲透這部分知識,為后面學習因式分解做好鋪墊。

  但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。

  本章教材編者在此安排不太合理,沒有考慮到學生的認知規(guī)律,不利于學生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。

  3、《乘法公式——平方差公式》教學反思

  我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。

  上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):①引入;②形成;③明確表述;④辨析;⑤鞏固應(yīng)用;⑥歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設(shè)計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。

  我的教學流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。

  當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完

  成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應(yīng)讓更多的同學動起來;當堂檢測的.題目應(yīng)該設(shè)置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。

  通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設(shè)計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。

  4、《乘法公式——平方差公式》教學反思

  本課的學習目的主要是熟練掌握整式的運算,并且這些知識是以后學習分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學習物理、化學等學科及其他科學技術(shù)不可或缺的數(shù)學工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學工具的重要作用。因此,在教學安排上,我選擇從學生熟悉的求多邊形面積入手,遵循從感性認識上升為理性思維的認知規(guī)律,得出抽象的概念,并在多項式乘法的基礎(chǔ)上,再次推導公式,使原本枯燥的數(shù)學概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學生學習的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學生應(yīng)用知識解決問題的能力,從而達到較好的授課效果。

  數(shù)學是一門抽象的學科,但數(shù)學是來源于實際生活的。因此,數(shù)學教育的目的是將數(shù)學運用到實際生活中去,讓學生深切感受到數(shù)學是有價值的科學,來源于生活,是其他科學的基礎(chǔ)。本節(jié)公式中字母的含義對學生來講很抽象,是本節(jié)的難點,也是學生運用公式解決實際問題的最大障礙,通過鞏固練習,讓學生逐步體會,為今后學習其他乘法公式做好準備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習中,已經(jīng)開始滲透這部分知識,為后面學習因式分解做好鋪墊。

  但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。

  本章教材編者在此安排不太合理,沒有考慮到學生的認知規(guī)律,不利于學生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。

  5、《乘法公式——平方差公式》教學反思

  我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。

  上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):①引入;②形成;③明確表述;④辨析;⑤鞏固應(yīng)用;⑥歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設(shè)計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。

  我的教學流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。

  當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完

  成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應(yīng)讓更多的同學動起來;當堂檢測的題目應(yīng)該設(shè)置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。

  通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設(shè)計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。

《完全平方和差公式》教學反思 4

  本節(jié)課的重點有兩個,一個是完全平方公式的運用,即對特殊數(shù)字的平方的'計算,另一個是添括號用以計算三個項的完全平方以及靈活運用兩個公式進行計算,因為有了平方差公式做基礎(chǔ),學生對于數(shù)字的平方有所感覺,知道將數(shù)字拆分,而問題出得比較多的是添括號的處理,也就是如何將三項合并成三項。尤其是在將部分項移入到帶有負號的括號的時候,經(jīng)常忘記變號。所以在上課的時候?qū)@個內(nèi)容進行的專門的訓練。

  通過訓練,學生對變號的規(guī)則有了詳盡的認識后,做起來比較輕松,但仍然有不少人犯錯。于是我在想:添括號本來就是一個比較復雜的過程,既然復雜,干嘛不把復雜問題簡單化?通過添括號完成后,直接利用結(jié)果分析得出:多項加減的完全平方則是將各項平方和再加上任意兩項的積的兩倍,這樣學生得到結(jié)論更直接,更快速,學生的信心也更足。

《完全平方和差公式》教學反思 5

  公式法進行因式分解,除了逆用平方差公式之外,還有兩個相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

  逆用完全平方公式進行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。

  有了前邊學習完全平方公式為基礎(chǔ),逆用完全平方公式進行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結(jié)果”,但對學生來說,還是相當困難的。

  逆用完全平方公式進行因式分解的步驟可分三步:

  1、寫成“首平方,尾平方,2倍之積中間放”的形式

  2、按公式寫出“兩項和的平方”的.形式,即因式分解

  3、兩項和中能合并同類項的合并。

  例題及練習的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。

  1、a、b代表單獨單項式,如:(1)m2-6m+9(2)4a2-4ab+b2

  2、a、b代表多項式,如:(1)(a+2b)2-8a(a+2b)+16a2

 。2)4(x+y)2+25-20(x+y)

  在此要有“整體思想”的意識,注意:相同部分作為一個整體然后再套用公式。

  3、先提取公因式,再用完全平方和(或差)公式如:

 。1)ay2-2a2y+a3

 。2)16xy2-9x2y-y2

  4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:

 。1)-m2+2mn-n2(2)3a2+6a+27

  盡管課前進行了充分的準備工作,但是學生作業(yè)中仍暴露出許多問題,如部分學生直接感到無從下手。

  《完全平方和差公式》教學反思3

  單純從內(nèi)容來說,完全平方公式其實并不難掌握,但是問題在于學生如何理解并接受公式,因此本節(jié)課花了比較多的時間來理解掌握公式上,農(nóng)田的例子的目的在于讓學生能直觀的理解完全平方公式,讓學生有一個初步的數(shù)形結(jié)合的思想,此外利用多項式乘以多項式的方法驗證完全平方公式是為了讓學生鞏固多項式之間的乘法運算,從而體會公式的優(yōu)越性。在體會了公式后,學生在練習當中出現(xiàn)的問題主要集中在2個方面:一個是符號的處理,(1/2-2y)的平方,中積的兩倍前面不清楚是加還是減,尤其是(-x-y)的平方這個問題;第二個是有不少人漏掉了積的兩倍這個項。

  為了讓學生徹底弄清楚這個問題,在這兩個方面的問題花了不少時間進行個別輔導。從整體上來看,學生對公式的來歷還是基本上能理解,只是在實際的運用中比較容易犯常見問題,下節(jié)課需要加強這兩個方面的訓練。

《完全平方和差公式》教學反思 6

  這節(jié)課學習的主要內(nèi)容是運用平方差公式進行因式分解,學習時如果直接就給同學們講把前面在整式的乘法中學習到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復的運用、反復的.操練的話,學生學起來就會覺得沒有味道,對數(shù)學有一種厭煩感,所以我就想到了運用逆向思維的方法來學習這節(jié)課的內(nèi)容,而且非常不利于學生理解整式乘法和因式分解之間的互逆的關(guān)系。

  在新課引入的過程中,首先讓學生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學生嘗試一下。可以說,對新問題的引入,是采取了由淺入深的方法,使學生對新知識不產(chǎn)生任何的畏懼感。

  在這節(jié)課中就明顯出現(xiàn)了這個問題,許多學生容易產(chǎn)生的問題都集中在一起讓學生解決,反而將學生搞得不清不楚。所以,通過這節(jié)展示課也讓我學到了很多,比如,化解難點時要考慮到學生的思維障礙,不可操之過急,否則適得其反。

【《完全平方和差公式》教學反思 】相關(guān)文章:

《完全平方公式》教案02-15

《完全平方公式》教案07-13

數(shù)學《完全平方公式》教案11-25

數(shù)學《完全平方公式》教案[通用]12-20

乘法公式的教學反思02-14

乘法公式教學反思04-01

《乘法公式》教學反思04-02

【優(yōu)秀】《完全平方公式》教案15篇07-13

《完全平方公式》教案實用[15篇]07-13