- 因式分解教案 推薦度:
- 數(shù)學因式分解教案 推薦度:
- 相關(guān)推薦
因式分解教案15篇
在教學工作者實際的教學活動中,總不可避免地需要編寫教案,教案是教學藍圖,可以有效提高教學效率。那么寫教案需要注意哪些問題呢?下面是小編整理的因式分解教案,僅供參考,希望能夠幫助到大家。
因式分解教案1
第1課時
1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.
2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.
自主探索,合作交流.
1.通過與因數(shù)分解的類比,讓學生感悟數(shù)學中數(shù)與式的共同點,體驗數(shù)學的類比思想.
2.通過對因式分解的教學,培養(yǎng)學生“換元”的意識.
【重點】 因式分解的概念及提公因式法的應(yīng)用.
【難點】 正確找出多項式中各項的公因式.
【教師準備】 多媒體.
【學生準備】 復(fù)習有關(guān)乘法分配律的知識.
導(dǎo)入一:
【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.
解法1:這塊場地的面積=×+×+×=++==2.
解法2:這塊場地的面積=×+×+×=×=×4=2.
從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.
[設(shè)計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
導(dǎo)入二:
【問題】 計算×15-×9+×2采用什么方法?依據(jù)是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.
[設(shè)計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
一、提公因式法分解因式的概念
思路一
[過渡語] 上一節(jié)我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.
如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).
大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯(lián)系?等式右邊的項有什么特點?
分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.
由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的'公因式.
由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.
總結(jié):如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.
思路二
[過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.
多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?
結(jié)論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.
多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?
結(jié)論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.
二、例題講解
[過渡語] 剛剛我們學習了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現(xiàn)象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【學生活動】 通過剛才的練習,大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問題.
總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.
容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.
教師提醒:
(1)各項都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號內(nèi)的多項式的項數(shù)與原多項式的項數(shù)相同;
(3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;
(4)將分解因式后的式子再進行整式的乘法運算,其積應(yīng)與原式相等.
[設(shè)計意圖] 經(jīng)歷用提公因式法進行因式分解的過程,在教師的啟發(fā)與指導(dǎo)下,學生自己歸納出提公因式的步驟及提取公因式時容易出現(xiàn)的類似問題,為提取公因式積累經(jīng)驗.
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
這里的字母a,b,c,可以是一個系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項式.
2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項式的公因式.
3.找公因式的一般步驟:
(1)若各項系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);
(2)取各項中相同的字母,字母的指數(shù)取最低的;
(3)所有這些因式的乘積即為公因式.
1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根據(jù)確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.
2.下列用提公因式法分解因式正確的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.
3.下列多項式中應(yīng)提取的公因式為5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.應(yīng)提取公因式5ab2,錯誤;C.應(yīng)提取公因式10a2b,錯誤;D.應(yīng)提取公因式5a2b2,錯誤.故選A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多項式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)計算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1課時
一、教材作業(yè)
【必做題】
教材第96頁隨堂練習.
【選做題】
教材第96頁習題4.2.
二、課后作業(yè)
【基礎(chǔ)鞏固】
1.把多項式4a2b+10ab2分解因式時,應(yīng)提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.
【答案與解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由題中給出的幾個式子可得出規(guī)律:n2+n=n(n+1).
本節(jié)運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數(shù)到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.
在小組討論之前,應(yīng)該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.
由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應(yīng)用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應(yīng)該注重因式分解的概念和方法的教學.
隨堂練習(教材第96頁)
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
習題4.2(教材第96頁)
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正確,因為提取的公因式不對,應(yīng)為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).
提公因式法是本章的第2小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數(shù)學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關(guān)系.
已知方程組求7(x-3)2-2(3-x)3的值.
〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個因式,再根據(jù)方程組整體代入,使計算簡便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程組可得原式=12×6=6.
因式分解教案2
學習目標
1、 學會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學習重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的`是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預(yù)習展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。
因式分解教案3
因式分解
教材分析
因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎(chǔ)上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應(yīng)用,也為以后學習分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的好處。由于本節(jié)課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法是教學中的難點。
教學目標
認知目標:(1)理解因式分解的概念和好處
(2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學生智能,深化學生逆向思維潛力和綜合運用潛力。
情感目標:培養(yǎng)學生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。
目標制定的思想
1.目標具體化、明確化,從學生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。
2.課堂教學體現(xiàn)潛力立意。
3.寓德育教育于教學之中。
教學方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學生思維,以設(shè)疑——感知——概括——運用為教學程序,充分遵循學生的認知規(guī)律,使學生能順利地掌握重點,突破難點,提高潛力。
3.在課堂教學中,引導(dǎo)學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現(xiàn)了學生的主動性原則。
4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質(zhì)量。
教學過程安排
一、提出問題,創(chuàng)設(shè)情境
問題:看誰算得快?(計算機出示問題)
。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
。1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)
。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)類比小學學過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書課題:§7。1因式分解
1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
三、獨立練習,鞏固新知
練習
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)
①(x+2)(x—2)=x2—4
、趚2—4=(x+2)(x—2)
、踑2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
、3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
、遦2++2=(k+)2
、鄕—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個因式分解的例子嗎?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學,運用新知:
例:把下列各式分解因式:(計算機演示)
。1)am+bm(2)a2—9(3)a2+2ab+b2
。4)2ab—a2—b2(5)8a3+b6
練習2:填空:(計算機演示)
。1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
。3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強化訓(xùn)練,掌握新知:
練習3:把下列各式分解因式:(計算機演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
。4)x2+—x(5)x2—0。01(6)a3—1
。ㄗ寣W生上來板演)
六、變式訓(xùn)練,擴展新知(計算機演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機動題:(填空)x2—8x+m=(x—4),且m=
七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學中滲透對立統(tǒng)一,以不變應(yīng)萬變的`辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
評價與反饋
1.透過由學生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。
2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學中的遺漏和不足,從而及時調(diào)控教與學。
3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。
4.透過課后作業(yè),了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業(yè),能夠更及時、更準確地了解學生思維發(fā)展的狀況,矯正的針對性更強。
5.透過課堂小結(jié),了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當?shù)亟o予引導(dǎo)和啟迪。
6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態(tài)、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應(yīng)用心捕捉學生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學。
因式分解教案4
一、教學目標
(一)、知識與技能:
。1)使學生了解因式分解的意義,理解因式分解的概念。
。2)認識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
。ǘ、過程與方法:
。1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應(yīng)用能力。
。ㄈ、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學過程
教學環(huán)節(jié):
活動1:復(fù)習引入
看誰算得快:用簡便方法計算:
。1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應(yīng)該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的.難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學生復(fù)習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導(dǎo)入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設(shè)計意圖:
引導(dǎo)學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
。3)(+4)(-4)= ;
(4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
。1)a+b+c= ;
。2)3x2-3x= ;
。3)2-16= ;
。4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
因式分解教案5
教學目標:
1.知識與技能:掌握運用提公因式法、公式法分解因式,培養(yǎng)學生應(yīng)用因式分解解決問題的能力.
2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.
3.情感態(tài)度與價值觀:通過因式分解的學習,使學生體會數(shù)學美,體會成功的自信和團結(jié)合作精神,并體會整體數(shù)學思想和轉(zhuǎn)化的數(shù)學思想.
教學重、難點:用提公因式法和公式法分解因式.
教具準備:多媒體課件(小黑板)
教學方法:活動探究法
教學過程:
引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識詳解
知識點1 因式分解的定義
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.
【說明】 (1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗.
怎樣把一個多項式分解因式?
知識點2 提公因式法
多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 師生互動
例1 用提公因式法將下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.
小結(jié) 運用提公因式法分解因式時,要注意下列問題:
(1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解.
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù)).
(3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.
學生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識點3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的.積的2倍,等于這兩個數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本題旨在考查用完全平方公式分解因式.
學生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
綜合運用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運用提公因式法和公式法分解因式.
小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= .
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差).
學生做一做 若x2+(k+3)x+9是完全平方式,則k= .
課堂小結(jié)
用提公因式法和公式法分解因式,會運用因式分解解決計算問題.
各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。
自我評價 知識鞏固
1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多項式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案6
學習目標:經(jīng)歷探索同底數(shù)冪的乘法運算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進行計算。通過由特殊到一般的猜想與說理、驗證,發(fā)展推理能力和有條理的.表達能力.
學習重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.
學習過程:
一、創(chuàng)設(shè)情境引入新課
復(fù)習乘方an的意義:an表示個相乘,即an=.
乘方的結(jié)果叫a叫做,n是
問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?
列式為,你能利用乘方的意義進行計算嗎?
二、探究新知:
探一探:
1根據(jù)乘方的意義填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?
說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?
同理可得:amanap=(m、n、p都是正整數(shù))
三、范例學習:
【例1】計算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.計算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、學以致用:
1.計算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
、-4444=⑸22n22n+1=⑹y5y2y4y=
2.判斷題:判斷下列計算是否正確?并說明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.計算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答題:
(1)已知xm+nxm-n=x9,求m的值.
(2)據(jù)不完全統(tǒng)計,每個人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個水分子,那么,每個人每年要用去多少個水分子?
因式分解教案7
教學目標
1、 會運用因式分解進行簡單的多項式除法。
2、 會運用因式分解解簡單的方程。
二、教學重點與難點教學重點:
教學重點
因式分解在多項式除法和解方程兩方面的應(yīng)用。
教學難點:
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學過程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動,講授新課
1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內(nèi)練習
合作學習
想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論。┦聦嵣,若AB=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0
試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2
等練習:課本P162課內(nèi)練習2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?
教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的'右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:
。1)運用因式分解進行多項式除法
。2)運用因式分解解簡單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
因式分解教案8
教學目標:
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當?shù)姆椒ㄟM行因式分解
4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學重點:
靈活運用因式分解解決問題
教學難點:
靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3
教學過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
教學引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]
鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。
講授新課
找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]
師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學生應(yīng)能夠向出十種左右的'定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)22、8a2b2-2a4b-8b3
三、知識應(yīng)用
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對因式分解又有哪些新的認識?
因式分解教案9
。ㄒ唬學習目標
1、會用因式分解進行簡單的多項式除法
2、會用因式分解解簡單的方程
(二)學習重難點重點:因式分解在多項式除法和解方程中兩方面的`應(yīng)用。
難點:應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點。
。ㄈ教學過程設(shè)計
看一看
1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:
①________________②__________
2.應(yīng)用因式分解解簡單的一元二次方程.
依據(jù)__________,一般步驟:__________
做一做
1.計算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習題
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________
(四)預(yù)習檢測
1.計算:
2.先請同學們思考、討論以下問題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列結(jié)論中哪個正確( )
、貯、B同時都為零,即A=0,
且B=0;
、贏、B中至少有一個為零,即A=0,或B=0;
(五)應(yīng)用探究
1.解下列方程
2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清練習
1.計算
2.解下列方程
、7x2+2x=0
、趚2+2x+1=0
、踴2=(2x-5)2
、躼2+3x=4x
因式分解教案10
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標
。1)會推導(dǎo)乘法公式
。2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
。3)會用提公因式法、公式法進行因式分解。
。4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的`能力。
3、重點、難點和關(guān)鍵
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
1.注重知識形成的探索過程,讓學生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.
2.知識內(nèi)容的呈現(xiàn)方式力求與學生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學生的思維水平和心理特征.
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.
4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應(yīng)用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進行因式分解 1課時
2.4用公式法進行因式分解 2課時
因式分解教案11
教學目標:運用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點,會用提公因式法與公式法分解因式.培養(yǎng)學生的觀察、聯(lián)想能力,進一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的`標準.
教學重點和難點:1.平方差公式;2.完全平方公式;3.靈活運用3種方法.
教學過程:
一、提出問題,得到新知
觀察下列多項式:x24和y225
學生思考,教師總結(jié):
(1)它們有兩項,且都是兩個數(shù)的平方差;(2)會聯(lián)想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項式是兩數(shù)差的形式,并且這兩個數(shù)又都可以寫成平方的形式,那么這個多項式可以運用平方差公式分解因式.
二、運用公式
例1:填空
、4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
、1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項式能否用平方差公式進行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
、4a2+625b2不能用
、16x549y4不能用
、4x236y2不能用
因式分解教案12
教學目標
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價值觀
在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學知識的內(nèi)在含義與價值.
重、難點與關(guān)鍵
1.重點:了解因式分解的意義,感受其作用.
2.難點:整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.
教學方法
采用“激趣導(dǎo)學”的教學方法.
教學過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請同學們探究下面的2個問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問題2:當a=102,b=98時,求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
。1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
。2)在下列括號里,填上適當?shù)捻,使等式成立?/p>
、9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、隨堂練習,鞏固深化
課本練習.
【探研時空】計算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學生自己進行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運算有何區(qū)別?
六、布置作業(yè),專題突破
選用補充作業(yè).
板書設(shè)計
15.4.1 因式分解
1、因式分解 例:
練習:
15.4.2 提公因式法
教學目標
1.知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
2.過程與方法
使學生經(jīng)歷探索多項式各項公因式的.過程,依據(jù)數(shù)學化歸思想方法進行因式分解.
3.情感、態(tài)度與價值觀
培養(yǎng)學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:掌握用提公因式法把多項式分解因式.
2.難點:正確地確定多項式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
教學方法
采用“啟發(fā)式”教學方法.
教學過程
一、回顧交流,導(dǎo)入新知
【復(fù)習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
。5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學習,應(yīng)用所學
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本P167練習第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習題15.4第1、4(1)、6題.
板書設(shè)計
15.4.2 提公因式法
1、提公因式法 例:
練習:
15.4.3 公式法(一)
教學目標
1.知識與技能
會應(yīng)用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:利用平方差公式分解因式.
2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式.
。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
。1)(a+5)(a-5)=a2-52=a2-25;
。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導(dǎo)學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
。1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導(dǎo)學生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學習,應(yīng)用所學
【例1】把下列各式分解因式:(投影顯示或板書)
。1)x2-9y2; (2)16x4-y4;
。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
。5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習,鞏固深化
課本P168練習第1、2題.
【探研時空】
1.求證:當n是正整數(shù)時,n3-n的值一定是6的倍數(shù).
2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通?紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習題15.4第2、4(2)、11題.
板書設(shè)計
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習:
15.4.3 公式法(二)
教學目標
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學會應(yīng)用.
2.難點:靈活地應(yīng)用公式法進行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的.
教學方法
采用“自主探究”教學方法,在教師適當指導(dǎo)下完成本節(jié)課內(nèi)容.
教學過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
。3) x2-0.01y2.
因式分解教案13
第6.4因式分解的簡單應(yīng)用
背景材料:
因式分解是初中數(shù)學中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學題中的簡單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學生學習因式分解初步應(yīng)用,首先要使學生體會到因式分解在數(shù)學中應(yīng)用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經(jīng)歷”,使多數(shù)學里擁有一定問題解決的經(jīng)驗。
教學目標:
1、在整除的情況下,會應(yīng)用因式分解,進行多項式相除。
2、會應(yīng)用因式分解解簡單的一元二次方程。
3、體驗數(shù)學問題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。
教學重點:
學會應(yīng)用因式分解進行多項式除法和解簡單一元二次方程。
教學難點:
應(yīng)用因式分解解簡單的一元二次方程。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學方法,以教師為主導(dǎo),學生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
教學過程:
一、創(chuàng)設(shè)情境,復(fù)習提問
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
。3)2 a2b-8a2b (4)4x2-9
[四位同學到黑板上演板,本課時用復(fù)習“練習引入”也不失為一種好方法,既先復(fù)習因式分解的.提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
(先讓學生思考上面所提出的問題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據(jù)是什么?這樣暴露學生的思維,讓學生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項式除以單項式。
。2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
。ㄗ寣W生自己比較哪種方法好)
利用上面的數(shù)學解題思路,同學們嘗試計算
。4x2-9)÷(3-2x)
學生總結(jié)解題步驟:1、因式分解;2、約去公因式)
。ㄈw學生動手動腦,然后叫學生回答,及時表揚,講練結(jié)合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉(zhuǎn)化為單項式的除法]
練習計算
。1)(a2-4)÷(a+2)
。2)(x2+2xy+y2)÷(x+y)
。3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學習
1、以四人為一組討論下列問題
若A?B=0,下面兩個結(jié)論對嗎?
。1)A和B同時都為零,即A=0且B=0
。2)A和B至少有一個為零即A=0或B=0
[合作學習,四個小組討論,教師逐步引導(dǎo),讓學生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]
2、你能用上面的結(jié)論解方程
。1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結(jié)步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習,解下列方程
。1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
。1)應(yīng)用因式分解和換元思想可以把某些多項式除法轉(zhuǎn)化為單項式除法。
。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學方法,以教師為主導(dǎo),學生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
因式分解教案14
一、運用平方差公式分解因式
教學目標1、使學生了解運用公式來分解因式的意義。
2、使學生理解平方差公式的意義,弄清平方差公式的形式和特點;使學生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。
3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)
重點運用平方差公式分解因式
難點靈活運用平方差公式分解因式
教學方法對比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動學生活動
情景設(shè)置:
同學們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?
(學生或許還有其他不同的解決方法,教師要給予充分的肯定)
新課講解:
從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學過的哪一個乘法公式?
首先我們來做下面兩題:(投影)
1.計算下列各式:
(1)(a+2)(a-2)=;
(2)(a+b)(a-b)=;
(3)(3a+2b)(3a-2b)=.
2.下面請你根據(jù)上面的算式填空:
(1)a2-4=;
(2)a2-b2=;
(3)9a2-4b2=;
請同學們對比以上兩題,你發(fā)現(xiàn)什么呢?
事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的'形式叫做多項式的因式分解。(投影)
比如:a2–16=a2–42=(a+4)(a–4)
例題1:把下列各式分解因式;(投影)
(1)36–25x2;(2)16a2–9b2;
(3)9(a+b)2–4(a–b)2.
(讓學生弄清平方差公式的形式和特點并會運用)
例題2:如圖,求圓環(huán)形綠化區(qū)的面積
練習:第87頁練一練第1、2、3題
小結(jié):
這節(jié)課你學到了什么知識,掌握什么方法?
教學素材:
A組題:
1.填空:81x2-=(9x+y)(9x-y);=
利用因式分解計算:=。
2、下列多項式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式
(1)1-16a2(2)9a2x2-b2y2
(3).49(a-b)2-16(a+b)2
B組題:
1分解因式81a4-b4=
2若a+b=1,a2+b2=1,則ab=;
3若26+28+2n是一個完全平方數(shù),則n=.
由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.
學生回答1:
992-1=99×99-1=9801-1
=9800
學生回答2:992-1就是(99+1)(99-1)即100×98
學生回答:平方差公式
學生回答:
(1):a2-4
(2):a2-b2
(3):9a2-4b2
學生輕松口答
(a+2)(a-2)
(a+b)(a-b)
(3a+2b)(3a-2b)
學生回答:
把乘法公式
(a+b)(a-b)=a2-b2
反過來就得到
a2-b2=(a+b)(a-b)
學生上臺板演:
36–25x2=62–(5x)2
=(6+5x)(6–5x)
16a2–9b2=(4a)2–(3b)2
=(4a+3b)(4a–3b)
9(a+b)2–4(a–b)2
=[3(a+b)]2–[2(a–b)]2
=[3(a+b)+2(a–b)]
[3(a+b)–2(a–b)]
=(5a+b)(a+5b)
解:352π–152π
=π(352–152)
=(35+15)(35–15)π
=50×20π
=1000π(m2)
這個綠化區(qū)的面積是
1000πm2
學生歸納總結(jié)
因式分解教案15
學習目標
1、學會用平方差公式進行因式法分解
2、學會因式分解的而基本步驟.
學習重難點重點:
用平方差公式進行因式法分解.
難點:
因式分解化簡的過程
自學過程設(shè)計教學過程設(shè)計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
Xkb1.com預(yù)習展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的`題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。
【因式分解教案】相關(guān)文章:
因式分解教案03-28
因式分解教案09-03
因式分解復(fù)習教案04-14
因式分解教案模板集錦八篇04-06
因式分解教案集錦9篇04-03
因式分解教案集錦七篇06-07
關(guān)于因式分解教案匯編十篇10-08
因式分解教案范文匯編七篇05-06
關(guān)于因式分解教案錦集十篇05-11