- 相關(guān)推薦
初中比例教案
作為一名無私奉獻(xiàn)的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么問題來了,教案應(yīng)該怎么寫?下面是小編幫大家整理的初中比例教案,希望能夠幫助到大家。
初中比例教案1
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的'一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:
用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動(dòng)3
問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計(jì)
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?
設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減。
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長(zhǎng)不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過40m,則它的寬應(yīng)大于等于10m。
初中比例教案2
知識(shí)技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標(biāo)
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);
2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。
解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。
(1)求這個(gè)函數(shù)的解析式,并畫出圖象;
(2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;
。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的'解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)A的坐標(biāo)為。
點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
。3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長(zhǎng)的函數(shù)關(guān)系式;
。2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
(2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當(dāng)時(shí),y的值;
。3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點(diǎn)A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0
初中比例教案3
一.學(xué)情分析
今年我擔(dān)任初一(3)班和初一(4)班的英語教學(xué)任務(wù),一個(gè)走讀班,一個(gè)住宿班,學(xué)生的英語水平有分層,差的太差,個(gè)別學(xué)生無法按時(shí)完成背書以及練習(xí)任務(wù),上課時(shí)學(xué)生表現(xiàn)還算積極配合,但還需要老師去調(diào)動(dòng)氣氛。部分學(xué)生的學(xué)習(xí)習(xí)慣不是太好,聽課雖然坐的很正,但是思緒已經(jīng)不在課堂,或者喜歡手上玩一些小東西等,作業(yè)沒有條理,字跡潦草。面對(duì)這樣的學(xué)生群體,本學(xué)期的教學(xué)任務(wù)會(huì)有艱難,但相信隨著學(xué)生們的慢慢成熟與老師的耐心指導(dǎo),這種情況應(yīng)該會(huì)有改進(jìn)。
二.本學(xué)期的指導(dǎo)思想:
在本學(xué)期的英語教學(xué)中,堅(jiān)持以下理念:
1、要面向全體學(xué)生,關(guān)注每個(gè)學(xué)生的情感,進(jìn)一步激發(fā)他們學(xué)習(xí)英語的興趣,幫助他們建立學(xué)習(xí)的成就感和自信心,培養(yǎng)創(chuàng)新精神;
2、整體設(shè)計(jì)目標(biāo),體現(xiàn)靈活開放,目標(biāo)設(shè)計(jì)以學(xué)生技能,語言知識(shí),情感態(tài)度,學(xué)習(xí)策略和文化意識(shí)的發(fā)展為基礎(chǔ);
3、突出學(xué)生主體,尊重個(gè)體差異;
4、注重過程評(píng)價(jià),促進(jìn)學(xué)生發(fā)展,建立能激勵(lì)學(xué)生學(xué)習(xí)興趣和自主學(xué)習(xí)能力發(fā)展的評(píng)價(jià)體系。讓他們?cè)谑褂煤蛯W(xué)習(xí)英語的過程中,體味到輕松和成功的快樂,而不是無盡的'擔(dān)憂和恐懼
三.教材分析
教材重點(diǎn):
1、根據(jù)初一學(xué)生的具體情況, 抓好學(xué)生的語音訓(xùn)練,今后的詞匯教學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。
2、掌握知識(shí)目標(biāo),句子結(jié)構(gòu)、一般現(xiàn)在時(shí),人稱代詞,時(shí)間介詞,特殊疑問句,名詞的可數(shù)和不可數(shù),there be 句型和一般過去時(shí)。
教材難點(diǎn):
1、一般現(xiàn)在時(shí)和一般過去時(shí)的正確運(yùn)用。 2、 音標(biāo)的掌握和運(yùn)用。
四.教學(xué)措施
1、每個(gè)單元布置一定的背誦內(nèi)容,加強(qiáng)他們的語感,堅(jiān)持每周默寫2-3次。
2、兩周內(nèi)把音標(biāo)教學(xué)夯實(shí)。
3、認(rèn)真貫徹晨讀制度,規(guī)定晨讀內(nèi)容,加強(qiáng)監(jiān)督,保證晨讀效果。
4、認(rèn)真配合學(xué)校做好查漏練習(xí)及月考工作,對(duì)英語學(xué)習(xí)實(shí)行量化制度。
5、充分利用合作小組,對(duì)后進(jìn)生進(jìn)行專門輔導(dǎo),讓他們?cè)谛∵M(jìn)步、小轉(zhuǎn)變中體味學(xué)習(xí)的快樂,樹立自信,盡快成長(zhǎng)起來。
6、關(guān)注學(xué)生的情感,營(yíng)造寬松、民主、和諧的教學(xué)氛圍。
7、實(shí)施"任務(wù)型"的教學(xué)途徑,培養(yǎng)學(xué)生綜合語言運(yùn)用能力
8、在教學(xué)中根據(jù)目標(biāo)并結(jié)合教學(xué)內(nèi)容,創(chuàng)造性地設(shè)計(jì)貼近學(xué)生實(shí)際的教學(xué)活動(dòng),組織他們積極參與。
9、加強(qiáng)對(duì)學(xué)生學(xué)習(xí)策略的指導(dǎo),為他們終身學(xué)習(xí)奠定基礎(chǔ)。
10、要充分利用現(xiàn)代教育技術(shù),利用計(jì)算機(jī)和多媒體教學(xué)軟件,改進(jìn)學(xué)生學(xué)習(xí)方法,提高教學(xué)效果。
11. 注重分層教學(xué),關(guān)注每一個(gè)學(xué)生的發(fā)展。
五.進(jìn)度安排
第1.2周 完成Unit1 Integrated skills和音標(biāo)教學(xué)。
第3周完成Unit1 Task 和Unit2 Reading.
第4周完成Unit2結(jié)束.
第5.6周完成Unit3 Integrated skills
第7.8周完成Unit3 Task 和Unit4 Reading.。
第9周完成Unit4
第10.11周 期中復(fù)習(xí),期中考試。
第12.13周 完成 Unit5-Unit6 reading。
第14周 完成 Unit6。
第15.16周 完成Unit7-Unit8 reading
第17周 完成Unit8
第18-19周 期末復(fù)習(xí)
第20周 期末考試
初中比例教案4
教學(xué)目標(biāo):
經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的 概念。
教學(xué)程序:
一、導(dǎo)入:
1、從現(xiàn)實(shí)情況和已有知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加強(qiáng)對(duì)函數(shù)概念的理解,導(dǎo)入反比例函數(shù)。
2 、U=IR,當(dāng)U=220V時(shí),
(1)你能用含 R的代數(shù)式 表示I嗎?
(2)利用寫出的關(guān)系式完成下表:
R(Ω) 20 40 60 80 100
I(A)
當(dāng)R越來越大時(shí),I怎樣 變化?
當(dāng)R越來越小呢?
。 3)變量I是R的函數(shù)嗎?為什么?
答:① I = UR
、 當(dāng)R越來越大時(shí),I越來越小,當(dāng)R越來越小時(shí),I越來越大。
、圩兞縄是R的函數(shù) 。當(dāng)給定一 個(gè)R的值時(shí),相應(yīng)地就確定了一個(gè)I值,因此I是R的函數(shù)。
二、新授:
1、反比例函數(shù)的概念
一般地,如果兩個(gè)變量x, y之間的關(guān)系可以表示成 y=kx (k為常數(shù),k≠0)的形式,那么稱y是x的.反比例函 數(shù)。
反比例函數(shù)的自變量x 不能為零。
2、做一做
一個(gè)矩形的 面積為20cm2,相鄰兩條邊長(zhǎng)分別為xcm和 ycm,那么變量y是變量x的 函數(shù)嗎?是反比例函數(shù)嗎?
解:y=20x ,是反比例函數(shù)。
三、課堂練習(xí) :
P133,12
四、作業(yè):
P133,習(xí)題5.1 1、2題
初中比例教案5
教學(xué)目標(biāo):
1、能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題
2、能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。
3、在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題
難點(diǎn):根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式
教學(xué)過程:
一、情景創(chuàng)設(shè):
為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒, 已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6mg,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時(shí),y關(guān)于x 的函數(shù)關(guān)系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí)學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
二、新授:
例1、小明將一篇24000字的社會(huì)調(diào)查報(bào)告錄入電腦,打印成文。
。1)如果小明以每分種120字的.速度錄入,他需要多少時(shí)間才能完成錄入任務(wù)?
。2)錄入文字的速度v(字/min)與完成錄入的時(shí)間t(min)有怎樣的函數(shù)關(guān)系?
。3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個(gè)字?
例2某自來水公司計(jì)劃新建一個(gè)容積為 的長(zhǎng)方形蓄水池。
。1)蓄水池的底部S 與其深度 有怎樣的函數(shù)關(guān)系?
。2)如果蓄水池的深度設(shè)計(jì)為5m,那么蓄水池的底面積應(yīng)為多少平方米?
。3)由于綠化以及輔助用地的需要,經(jīng)過實(shí)地測(cè)量,蓄水池的長(zhǎng)與寬最多只能設(shè)計(jì)為100m和60m,那么蓄水池的深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù))
三、課堂練習(xí)
1、一定質(zhì)量的氧氣,它的密度 (kg/m3)是它的體積V( m3) 的反比例函數(shù), 當(dāng)V=10m3時(shí),=1.43kg/m3. (1)求與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2m3時(shí)求氧氣的密度.
2、某地上年度電價(jià)為0.8元度,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55元至0.75元之間.經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時(shí),y=-0.8.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少元時(shí),本年度電力部門的收益將比上年度增加20%? [收益=(實(shí)際電價(jià)-成本價(jià))(用電量)]
3、如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)P在BC邊上移動(dòng)(不與點(diǎn)B、C重合),設(shè)PA=x,點(diǎn)D到PA的距離DE=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍.
四、小結(jié)
五、作業(yè)
30.31、2、3
【初中比例教案】相關(guān)文章:
比例的教案10-11
《解比例》教案03-19
比和比例教案03-10
《比例的意義》教案12-10
反比例教案02-17
《正比例函數(shù)》教案02-14
數(shù)學(xué)反比例教案03-25
《比例的意義》教案14篇02-11
《比例的意義》教案精選15篇02-20