八年級(jí)數(shù)學(xué)教案[推薦]
作為一名教職工,時(shí)常需要用到教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。來(lái)參考自己需要的教案吧!下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
八年級(jí)數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。
2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。
3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。
4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):分式的加減運(yùn)算。
2.難點(diǎn):異分母的分式加減法運(yùn)算。
三、教學(xué)方法
啟發(fā)式、分組討論。
四、教學(xué)手段
幻燈片。
五、教學(xué)過(guò)程
。ㄒ唬┮
1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:
。ǘ┬抡n
1.類比分?jǐn)?shù)的通分得到分式的通分:把幾個(gè)異分母的`分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
2.通分的依據(jù):分式的基本性質(zhì)。
3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。
例1通分:
。1)解:∵最簡(jiǎn)公分母是,小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。
。2)解:
例2通分:
。1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。
(2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),練習(xí):教材P,79中1、2、3。
。ㄈ┱n堂小結(jié)
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
八年級(jí)數(shù)學(xué)教案2
【教學(xué)目標(biāo)】
1、了解分式概念。
2、理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的條件。
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)過(guò)程】
一、課堂導(dǎo)入
1、讓學(xué)生填寫[思考],學(xué)生自己依次填出:
2、問(wèn)題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí)。
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=。
3、以上的式子有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義。即當(dāng)B≠0時(shí),分式才有意義。
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義。
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的.取值范圍。
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?
。1);(2);(3)。
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:
、俜帜覆荒転榱;
、诜肿訛榱,這樣求出的m的解集中的公共部分,就是這類題目的解。
三、隨堂練習(xí)
1、判斷下列各式哪些是整式,哪些是分式?
9x+4
2、當(dāng)x取何值時(shí),下列分式有意義?
3、當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@。
五、布置作業(yè)
課本128~129頁(yè)練習(xí)。
八年級(jí)數(shù)學(xué)教案3
一、教材分析
1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。
本課是教材求兩結(jié)點(diǎn)之間的最短路徑問(wèn)題是圖最常見(jiàn)的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。
2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問(wèn)題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:
。1)重點(diǎn):如何將現(xiàn)實(shí)問(wèn)題抽象成求解最短路徑問(wèn)題,以及該問(wèn)題的解決方案。
(2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。
3、教學(xué)安排:最短路徑問(wèn)題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對(duì)結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問(wèn)題的解決。安排一個(gè)課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問(wèn)題解決與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過(guò)程。
二、教學(xué)目標(biāo)分析
1、知識(shí)目標(biāo):掌握最短路徑概念、能夠求解最短路徑。
2、能力目標(biāo):
。1)通過(guò)將旅游景點(diǎn)線路選擇問(wèn)題抽象成求最短路徑問(wèn)題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。
。2)通過(guò)旅游景點(diǎn)線路選擇問(wèn)題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問(wèn)題、解決問(wèn)題的能力。
3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。
三、教法分析
課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過(guò)程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開(kāi)教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。
四、學(xué)法指導(dǎo)
1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對(duì)性的預(yù)習(xí)。
2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識(shí)點(diǎn)。
3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。
五、教學(xué)過(guò)程分析
(一)課前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學(xué)方法及注意事項(xiàng):
。1)采用提問(wèn)方式,注意及時(shí)小結(jié),提問(wèn)的目的是幫助學(xué)生回憶概念。
。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個(gè)點(diǎn)間最短距離的'實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問(wèn)題”。教學(xué)方法及注意事項(xiàng):
。1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過(guò)渡。
。2)此處使用案例教學(xué)法,不在于問(wèn)題的求解過(guò)程,只是為了說(shuō)明問(wèn)題的存在,所以這里的例子只需要概述,能夠說(shuō)明問(wèn)題即可。
(三)講授新課(25~30分鐘)
1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。
。1)將實(shí)際問(wèn)題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問(wèn)題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):
①主要采用講授法,將實(shí)際問(wèn)題用圖形表示出來(lái)。語(yǔ)言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號(hào)表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的旁邊。)一邊用語(yǔ)言描述,一邊在黑上畫圖。
、谧⒁馐痉懂媹D只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。
、奂皶r(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問(wèn)題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問(wèn)題。
④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。
教學(xué)方法及注意事項(xiàng):
、賳l(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長(zhǎng)度遞增產(chǎn)生最短路徑?
、诮Y(jié)合案例分析求解最短路徑過(guò)程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。
。ㄋ模┱n堂小結(jié)(3~5分鐘)
1、明確本節(jié)課重點(diǎn)
2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問(wèn)題呢?
(五)布置作業(yè)
1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。
六、教學(xué)特色
以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動(dòng)起來(lái)。在順利開(kāi)展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。
八年級(jí)數(shù)學(xué)教案4
教學(xué)目標(biāo)
1、 理解并掌握等腰三角形的判定定理及推論
2、 能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.
教學(xué)重點(diǎn):
等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn):
正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.
教學(xué)過(guò)程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問(wèn)題,創(chuàng)設(shè)情境
出示投影片.某地質(zhì)專家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(shù)(B點(diǎn))為B標(biāo),然后在這棵樹(shù)的`正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專家測(cè)得AC的長(zhǎng)度就可知河流寬度.
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問(wèn)題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.
2、小結(jié),通過(guò)論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡(jiǎn)稱“等角對(duì)等邊”.
4.引導(dǎo)學(xué)生說(shuō)出引例中地質(zhì)專家的測(cè)量方法的根據(jù).
III例題與練習(xí)
1.如圖2
其中△ABC是等腰三角形的是 [ ]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).
、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
、苋粢阎 AD=4cm,則BC______cm.
3.以問(wèn)題形式引出推論l______.
4.以問(wèn)題形式引出推論2______.
例:如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形.
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.
練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過(guò)F作DE//BC,交AB于點(diǎn)D,交AC于E.問(wèn)圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1.判定一個(gè)三角形是等腰三角形有幾種方法?
2.判定一個(gè)三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問(wèn)題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁(yè)習(xí)題12.3第5、6題
八年級(jí)數(shù)學(xué)教案5
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)版數(shù)學(xué)教材八年級(jí)下冊(cè)第章第二節(jié)的內(nèi)容?v觀整個(gè)教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
(一)知識(shí)目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;
。ǘ┠芰δ繕(biāo):
1、通過(guò)本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、等能力;
2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說(shuō)理的基本方法;
。ㄈ┣楦心繕(biāo):
1、讓學(xué)生樹(shù)立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的精神;
3、通過(guò)正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過(guò)程中,特意設(shè)計(jì)了讓學(xué)生自己組織語(yǔ)言培養(yǎng)說(shuō)理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對(duì)本節(jié)課的特點(diǎn),采用"--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過(guò)學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過(guò)觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過(guò)一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過(guò)互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂(lè)趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識(shí)回顧
以提問(wèn)的`形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過(guò)手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過(guò)學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義:引導(dǎo)學(xué)生說(shuō)出自己變化出正方形的過(guò)程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過(guò)程。請(qǐng)同學(xué)們舉手,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過(guò)重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過(guò)程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個(gè)角都是直角,四條邊都相等;
定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過(guò)體現(xiàn)生活中實(shí)際問(wèn)題,來(lái)提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來(lái)源于生活并要于生活。
5、課堂小結(jié):此環(huán)節(jié)我是通過(guò)圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過(guò)對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì):作業(yè)是教材159頁(yè),第12、14兩小道證明題,通過(guò)此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。
八年級(jí)數(shù)學(xué)教案6
一、 教學(xué)目標(biāo):
1.掌握用一組對(duì)邊平行且相等來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來(lái)證明問(wèn)題.
3.通過(guò)平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問(wèn)題的能力.
二、 重點(diǎn)、難點(diǎn)
1.重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法.
2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用.
三、例題的意圖分析
本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過(guò)學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題、尋找最佳解題途徑的能力.
四、課堂引入
1. 平行四邊形的`性質(zhì);
2. 平行四邊形的判定方法;
3. 【探究】 取兩根等長(zhǎng)的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?
結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形.
五、例習(xí)題分析
例1(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF.
分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明
四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡(jiǎn)單.
證明:∵ 四邊形ABCD是平行四邊形,AD∥CB,AD=CD.
∵ E、F分別是AD、BC的中點(diǎn),DE∥BF,且DE= AD,BF= BC.
DE=BF.
四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形).
BE=DF.
此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多,因此應(yīng)使學(xué)生獲得清晰的證明思路.
例2(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F.求證:四邊形BEDF是平行四邊形.
分析:因?yàn)锽EAC于E,DFAC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.
證明:∵ 四邊形ABCD是平行四邊形,AB=CD,且AB∥CD.
BAE=DCF.
八年級(jí)數(shù)學(xué)教案7
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問(wèn)題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的.因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請(qǐng)看乘法公式
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
。1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
。1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
。1)(a+b)2—c2=a2+2ab+b2—c2。
。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級(jí)數(shù)學(xué)教案8
知識(shí)結(jié)構(gòu):
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點(diǎn).推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.
本節(jié)內(nèi)容的難點(diǎn)是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,經(jīng);煜,幫助學(xué)生認(rèn)識(shí)判定與性質(zhì)的區(qū)別,這是本節(jié)的難點(diǎn).另外本節(jié)的文字?jǐn)⑹鲱}也是難點(diǎn)之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識(shí)點(diǎn)的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時(shí)從條件得到用哪個(gè)定理及如何用.
教法建議:
本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過(guò)多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵(lì)學(xué)生討論解決問(wèn)題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說(shuō)明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程
學(xué)生學(xué)習(xí)過(guò)互逆命題和互逆定理的概念,首先提出問(wèn)題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來(lái)問(wèn):此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的`認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì)。
(2)采用“類比”的學(xué)習(xí)方法,獲取知識(shí)。
由性質(zhì)定理的學(xué)習(xí),我們得到了幾個(gè)推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說(shuō)哪些推論呢?這里先讓學(xué)生發(fā)表意見(jiàn),然后大家共同分析討論,把一些有價(jià)值的、甚至就是教材中的推論板書出來(lái)。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c(diǎn)撥引導(dǎo)。
(3)總結(jié),形成知識(shí)結(jié)構(gòu)
為了使學(xué)生對(duì)本節(jié)課有一個(gè)完整的認(rèn)識(shí),便于今后的應(yīng)用,教師提出如下問(wèn)題,讓學(xué)生思考回答:(1)怎樣判定一個(gè)三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個(gè)三角形是等邊三角形?
一.教學(xué)目標(biāo):
1.使學(xué)生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運(yùn)用;
3.通過(guò)例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;
4.通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
5.通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.
二.教學(xué)重點(diǎn):等腰三角形的判定定理
三.教學(xué)難點(diǎn):性質(zhì)與判定的區(qū)別
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:以學(xué)生為主體的討論探索法
六.教學(xué)過(guò)程:
1、新課背景知識(shí)復(fù)習(xí)
(1)請(qǐng)同學(xué)們說(shuō)出互逆命題和互逆定理的概念
估計(jì)學(xué)生能用自己的語(yǔ)言說(shuō)出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語(yǔ)言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.
(簡(jiǎn)稱“等角對(duì)等邊”).
由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法.
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.
(2)不能說(shuō)“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫未判定它是一個(gè)等腰三角形.
(3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.
2.推論1:三個(gè)角都相等的三角形是等邊三角形.
推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形.
要讓學(xué)生自己推證這兩條推論.
小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3.應(yīng)用舉例
例1.求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.
分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常?紤]應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個(gè)內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學(xué)生板演即可.
補(bǔ)充例題:(投影展示)
1.已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問(wèn)題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結(jié)BD,在 中, (已知)
(等邊對(duì)等角)
(已知)
即
(等教對(duì)等邊)
小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.
2.已知,在 中, 的平分線與 的外角平分線交于D,過(guò)D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對(duì)于三個(gè)線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線和平行線,可以通過(guò)角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.
證明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小結(jié):
(1)等腰三角形判定定理及推論.
(2)等腰三角形和等邊三角形的證法.
七.練習(xí)
教材 P.75中1、2、3.
八.作業(yè)
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九.板書設(shè)計(jì)
八年級(jí)數(shù)學(xué)教案9
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;
。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
(3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問(wèn)題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過(guò)程設(shè)計(jì)
1.探究性質(zhì)1
問(wèn)題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.
問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的`依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
(1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問(wèn)題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問(wèn)題7 回顧我們學(xué)過(guò)的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對(duì) 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
(2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1. ; ; .
【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.
2.下列運(yùn)算正確的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計(jì)算: .
【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.
八年級(jí)數(shù)學(xué)教案10
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡(jiǎn)公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡(jiǎn)公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過(guò)程:
(一)引入
(1)如何計(jì)算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡(jiǎn)公分母的概念。
(2)如何計(jì)算:
(3)何計(jì)算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母.
通常取各分母的所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做最簡(jiǎn)公分母.
根據(jù)分式通分和最簡(jiǎn)公分母的定義,將分式通分:
最簡(jiǎn)公分母為:
然后根據(jù)分式的基本性質(zhì),分別對(duì)原來(lái)的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx
通過(guò)本例使學(xué)生對(duì)于分式的通分大致過(guò)程和思路有所了解。讓學(xué)生歸納通分的思路過(guò)程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問(wèn)“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡(jiǎn)公分母是12xy2,
小結(jié):各分母的`系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù).
解:∵最簡(jiǎn)公分母是10a2b2c2,
由學(xué)生歸納最簡(jiǎn)公分母的思路。
分式通分中求最簡(jiǎn)公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
理解平行四邊形的概念,掌握平行四邊形的邊、角、對(duì)角線的性質(zhì),并能初步用其來(lái)解決實(shí)際問(wèn)題、
2、能力目標(biāo):
通過(guò)探索、發(fā)現(xiàn)、論證培養(yǎng)學(xué)生類比、轉(zhuǎn)化的數(shù)學(xué)思想方法,鍛煉學(xué)生縝密的邏輯思維能力,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想、
3、情感目標(biāo):
讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)的'實(shí)際應(yīng)用價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)的學(xué)習(xí)態(tài)度、
教學(xué)重點(diǎn):
平行四邊形的性質(zhì)
教學(xué)難點(diǎn):
理解并應(yīng)用平行四邊形的性質(zhì)
教學(xué)方法:
探究、啟發(fā)式
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景引入新課
通過(guò)觀察,讓學(xué)生勾勒出發(fā)現(xiàn)的幾何圖形:平行四邊形,然后舉出一些生活中的實(shí)例。從而引出平行四邊形在日常生活中應(yīng)用廣泛,是一種美觀實(shí)用的圖形,因此我們有必要系統(tǒng)學(xué)習(xí)一下平行四邊形。
二、判斷圖形,明確概念
通過(guò)一些圖片的判斷,讓學(xué)生認(rèn)識(shí)什么樣的四邊形是平行四邊形。
然后讓學(xué)生自己歸納定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形引入概念:
三、平行四邊形的畫法
讓學(xué)生自己在練習(xí)本上畫出平行四邊形,老師指導(dǎo)學(xué)生完成。
接著老師展示畫平行四邊形的步驟,并演示給學(xué)生看。
四、探究平行四邊形的旋轉(zhuǎn)
用一枚圖釘在O點(diǎn)穿過(guò),將平行四邊形ABCD繞點(diǎn)O旋轉(zhuǎn)180,觀察旋轉(zhuǎn)后的平行四邊形ABCD與紙上畫的平行四邊形EFGH是否重合。
讓學(xué)生討論,得出結(jié)論,教師總結(jié):我們發(fā)現(xiàn),旋轉(zhuǎn)之后的兩個(gè)平行四邊形完全重合,即平行四邊形是中心對(duì)稱圖形,對(duì)角線的交點(diǎn)O就是對(duì)稱中心。
五、例題與練習(xí)
1、例題1:
如圖,已知平行四邊形ABCD,∠A=40,求其他各個(gè)內(nèi)角的度數(shù)。
思路導(dǎo)引:已知一個(gè)平行四邊形與其中的一個(gè)角,由平行四邊形的性質(zhì)可得兩鄰角互補(bǔ),所以∠A+∠D=180,∠A+∠B=180,從而求出∠D和∠B,再求∠C。
2、例題2:已知在平行四邊形ABCD中,AB=8,周長(zhǎng)等于24,求其余三條邊的長(zhǎng)。
解:∵在平行四邊形ABCD中,AB=DC,AD=BC(平行四邊形的對(duì)邊相等)
又∵AB=8
AB+BC+CD+DA=24
∴CD=8,AD=BC=4
3、練習(xí)
1、在平行四邊形ABCD中,已知AB=8,AO=3,∠ABC=50°
則CD=________,AC=________,∠BAD=________,∠CDA=________
2、在平行四邊形ABCD中,∠A+∠C=150°那么
∠A=__________,∠D=_________
3、在平行四邊形ABCD中,∠A:∠B=4:5,那么
∠B=__________,∠C=_________
六、小結(jié)與作業(yè)
這節(jié)課你學(xué)到了什么?
1、平行四邊形的概念
2、平行四邊形的性質(zhì)
3、運(yùn)用性質(zhì)解決問(wèn)題
作業(yè)安排
作業(yè)
課本43頁(yè)練習(xí)第1題和第2題
八年級(jí)數(shù)學(xué)教案12
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容?v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
(一)知識(shí)目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;
(二)能力目標(biāo):
1、通過(guò)本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說(shuō)理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹(shù)立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過(guò)正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語(yǔ)言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過(guò)程中,特意設(shè)計(jì)了讓學(xué)生自己組織語(yǔ)言培養(yǎng)說(shuō)理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過(guò)學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過(guò)觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過(guò)一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過(guò)互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂(lè)趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識(shí)回顧
以提問(wèn)的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長(zhǎng)的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過(guò)手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過(guò)學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義
引導(dǎo)學(xué)生說(shuō)出自己變化出正方形的過(guò)程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過(guò)程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的'平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過(guò)重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過(guò)程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個(gè)角都是直角,四條邊都相等;
定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
3、例題講解
求證:正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過(guò)程,教師板書,在板書的過(guò)程中,請(qǐng)其它小組的同學(xué)提出合理化建議,使此題證明過(guò)程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語(yǔ)言表達(dá)能力,讓學(xué)生的個(gè)性得到充分的展示
4、課堂練習(xí)
第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過(guò)體現(xiàn)生活中實(shí)際問(wèn)題,來(lái)提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來(lái)源于生活并要服務(wù)于生活。
5、課堂小結(jié)
此環(huán)節(jié)我是通過(guò)圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過(guò)對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì)
作業(yè)是教材159頁(yè),第12、14兩小道證明題,通過(guò)此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。
八年級(jí)數(shù)學(xué)教案13
一、教學(xué)目標(biāo)
、俳(jīng)歷探索整式除法運(yùn)算法則的過(guò)程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。
、诶斫庹匠ǖ乃憷,發(fā)展有條理的思考及表達(dá)能力。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。
難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
三、教學(xué)準(zhǔn)備
卡片及多媒體課件。
四、教學(xué)設(shè)計(jì)
(一)情境引入
教科書第161頁(yè)問(wèn)題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。
注:教科書從實(shí)際問(wèn)題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問(wèn)題的過(guò)程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過(guò)程。
(二)探究新知
。1)計(jì)算(1。90×1024)÷(5。98×1021),說(shuō)說(shuō)你計(jì)算的根據(jù)是什么?
。2)你能利用(1)中的方法計(jì)算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(jù)(2)說(shuō)說(shuō)單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?
注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。
單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的.安排,是使學(xué)生通過(guò)對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說(shuō)明,也可類比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過(guò)程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。
。ㄈw納法則
單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
注:通過(guò)總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
。ㄋ模⿷(yīng)用新知
例2計(jì)算:
。1)28x4y2÷7x3y;
。2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書的形式完成。口述和板書都應(yīng)注意展示法則的應(yīng)用,計(jì)算過(guò)程要詳盡,使學(xué)生盡快熟悉法則。
注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來(lái)講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問(wèn)題。
鞏固新知教科書第162頁(yè)練習(xí)1及練習(xí)2。
學(xué)生自己嘗試完成計(jì)算題,同桌交流。
注:在獨(dú)立解題和同伴的相互交流過(guò)程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。
。ㄎ澹┳鳂I(yè)
1、必做題:教科書第164頁(yè)習(xí)題15。3第1題;第2題。
2、選做題:教科書第164頁(yè)習(xí)題15。3第8題
八年級(jí)數(shù)學(xué)教案14
一、創(chuàng)設(shè)情境導(dǎo)入新課
1、介紹七巧板
師:你們玩過(guò)七巧板嗎?你知道七巧板是由哪些不同的圖形組成的嗎?
一千多年前,中國(guó)人發(fā)明了七巧板。七巧板是由七塊圖形組成的,它可以拼出豐富的圖案來(lái)。外國(guó)人管它叫“中國(guó)魔板”,在他們看來(lái),沒(méi)有哪一種智力玩具比它更神奇的了。
2、導(dǎo)入:今天就讓我們一起來(lái)認(rèn)識(shí)其中的一個(gè)圖形—平行四邊形。(出示課題)
【設(shè)計(jì)意圖:以學(xué)生喜愛(ài)的“七巧板”為切入點(diǎn),引發(fā)學(xué)生的學(xué)習(xí)熱情。】
二、嘗試探索建立模型
。ㄒ唬┱J(rèn)一認(rèn)形成表象
師:老師這兒的圖形就是平行四邊形。改變方向后問(wèn):它還是平行四邊形嗎?
不管平行四邊形的方向怎樣變化,它都是一個(gè)平行四邊形。(圖貼在黑板上)
。ǘ┱乙徽腋兄卣
1、在例題圖中找平行四邊形
師:老師這有幾幅圖,你能在這上面找到平行四邊形嗎?
2、尋找生活中的平行四邊形
師:其實(shí)在我們周圍也有平行四邊形,你在哪些地方見(jiàn)過(guò)平行四邊形?(可相機(jī)出示:活動(dòng)衣架)
(三)做一做探究特征
1、剛才我們?cè)谏钪姓业搅艘恍┢叫兴倪呅,現(xiàn)在你能利用手邊的材料做出一個(gè)平行四邊形嗎?
2、在小組里交流你是怎么做的并選代表在班級(jí)里匯報(bào)。
3、剛才同學(xué)們成功的做出了一個(gè)平行四邊形,在做的過(guò)程中,你有什么發(fā)現(xiàn)或收獲嗎?你是怎樣發(fā)現(xiàn)的?(小組交流)
4、全班交流,師小結(jié)平行四邊形的。特征。(兩組對(duì)邊分別平行并且相等;對(duì)角相等;內(nèi)角和是360度。)
【設(shè)計(jì)意圖:新課程強(qiáng)調(diào)體驗(yàn)性學(xué)習(xí),學(xué)生學(xué)習(xí)不僅要用腦子去想,而且還要用眼睛看,用耳去聽(tīng),用嘴去說(shuō),用手去做,即用自己的身體去親身經(jīng)歷,用自己的心靈去感悟。這里通過(guò)認(rèn)平行四邊形、找平行四邊形和做平行四邊形,使學(xué)生經(jīng)歷由表象到抽象的過(guò)程。在一系列的活動(dòng)中,讓學(xué)生感悟到了平行四邊形的特征!
(四)練一練鞏固表象
完成想想做做第1、2題
。ㄎ澹┊嬕划嬚J(rèn)識(shí)高、底
1、出示例題,你能量出平行四邊形兩條紅線間的距離嗎?(學(xué)生在自制的圖上畫)說(shuō)說(shuō)你是怎么量的?
2、師:剛才你們畫的這條垂直線段就是平行四邊形的高。這條對(duì)邊就是平行四邊形的底。
3、平行四邊形的高和底書上是怎么說(shuō)的呢?(學(xué)生看書)
4、這樣的高能畫多少條呢?為什么?你能畫出另一組對(duì)邊上的高,并量一量嗎?(機(jī)動(dòng))
5、教學(xué)“試一試”。(學(xué)生各自量,交流時(shí)強(qiáng)調(diào)底與高的對(duì)應(yīng)關(guān)系)
6、畫高(想想做做第5題)(提醒學(xué)生畫上直角標(biāo)記)
三、動(dòng)手操作鞏固深化
1、完成想想做做第3、4題
第3題:拼一拼、移一移,說(shuō)說(shuō)怎樣移的?
第4題引入:木匠張師傅想把一塊平行四邊形的木板鋸成兩部分,拼成一張長(zhǎng)方形桌面,假如你是張師傅,該怎么鋸呢?想試試嗎?找一張平行四邊形的紙?jiān)囈辉嚒?/p>
2、完成想想做做第6題(課前做好,課上活動(dòng)。)
(1)師拿出自做的長(zhǎng)方形,捏住對(duì)角相反方向拉一拉,看你發(fā)現(xiàn)了什么?師做生觀察,互相交流。
。2)判斷:長(zhǎng)方形是平行四邊形嗎?小組交流然后再說(shuō)理由,此時(shí)老師可問(wèn)學(xué)生長(zhǎng)方形是什么樣的平行四邊形?(特殊)特殊在哪了?
。3)得出平行四邊形的特性
師再捏住平行四邊形的對(duì)角向里推?茨惆l(fā)現(xiàn)了什么?
師:三角形具有穩(wěn)定性,通過(guò)剛才的動(dòng)手操作,你覺(jué)得平行四邊形有什么特性呢?(不穩(wěn)定性、容易變形)
。4)特性的應(yīng)用
師:平行四邊形容易變形的特性在生活中有廣泛的應(yīng)用。你能舉些例子嗎?(學(xué)生舉例后閱讀教科書P45“你知道嗎?”)
【設(shè)計(jì)意圖:】
四、暢談收獲拓展延伸
1、師:今天這節(jié)課你有什么收獲嗎?
2、用你手中的七巧板拼我們學(xué)過(guò)的圖形。
3、尋找平行四邊形容易變形的特性在生活中的應(yīng)用。
【設(shè)計(jì)意圖:擴(kuò)展課堂教學(xué)的有限空間,課內(nèi)課外密切結(jié)合。課結(jié)束時(shí),布置實(shí)踐作業(yè),要學(xué)生尋找平行四邊形容易變形的特性在生活中的應(yīng)用,使學(xué)生的課堂學(xué)習(xí)和課后生活聯(lián)系起來(lái),使學(xué)生感受到課堂知識(shí)在生活中的`應(yīng)用,體驗(yàn)到生活中時(shí)時(shí)處處離不開(kāi)數(shù)學(xué),增強(qiáng)數(shù)學(xué)學(xué)習(xí)的親切感和實(shí)用性。整理:
(1)使方程的右邊為0(2)方程的左邊按x的降冪排列。我們會(huì)得到:
① ② ③
你能發(fā)現(xiàn)上面三個(gè)方程有什么共同點(diǎn)?
_____________________叫做一元二次方程。在定義中著重強(qiáng)調(diào)了幾點(diǎn)?哪幾點(diǎn)?如果給你一個(gè)方程,讓你判定它是否是一元二次方程,你關(guān)鍵看哪幾方面?
學(xué)法指導(dǎo)
學(xué)習(xí)一元二次方程的概念,讓同學(xué)們剖析定義,總結(jié)判定一個(gè)方程是否是一元二次方程的方法。
4、試一試
下面方程是一元二次方程嗎?為什么?
、賏x-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0
方法提升:
由一元二次方程的定義可知,只有同時(shí)滿足下列三個(gè)條件:①整式方程;②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個(gè)條件的方程都不是一元二次方程。
口訣生成:
判斷一元二次方程并不難,三個(gè)條件要找全:一元,二次,整式判,正確答案就出現(xiàn)。
5、學(xué)一學(xué)
一元二次方程都可以化為ax+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax,bx,c分別稱為這個(gè)方程的二次項(xiàng),一次項(xiàng)和常數(shù)項(xiàng),a,b分別稱為二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)。你能指出下列方程的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)嗎?請(qǐng)你用a,b,c表示出來(lái)。
八年級(jí)數(shù)學(xué)教案15
一、學(xué)習(xí)目標(biāo)
1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理。
二、重點(diǎn)難點(diǎn)
重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過(guò)程。
三、合作學(xué)習(xí)
。ㄒ唬┗仡檰雾(xiàng)式除以單項(xiàng)式法則
。ǘ⿲W(xué)生動(dòng)手,探究新課
1.計(jì)算下列各式:
。1)(am+bm)÷m;
。2)(a2+ab)÷a;
。3)(4x2y+2xy2)÷2xy。
2.提問(wèn):
、僬f(shuō)說(shuō)你是怎樣計(jì)算的;
、谶有什么發(fā)現(xiàn)嗎?
。ㄈ┛偨Y(jié)法則
1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成XXXXXXXXXXXXXX
四、精講精練
例:(1)(12a3—6a2+3a)÷3a;
。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
。3)[(x+y)2—y(2x+y)—8x]÷2x;
。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習(xí):教科書練習(xí)。
五、小結(jié)
1、單項(xiàng)式的.除法法則
2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:
A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過(guò)程中注意單項(xiàng)式的系數(shù)飽含它前面的符號(hào);
B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);
C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;
D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行;
E、多項(xiàng)式除以單項(xiàng)式法則。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案08-29
八年級(jí)下冊(cè)數(shù)學(xué)教案10-22
八年級(jí)數(shù)學(xué)教案【常用15篇】12-30
分類的數(shù)學(xué)教案11-16