《分?jǐn)?shù)乘整數(shù)》教學(xué)反思(通用15篇)
作為一位優(yōu)秀的老師,教學(xué)是重要的工作之一,對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,來(lái)參考自己需要的教學(xué)反思吧!以下是小編為大家收集的《分?jǐn)?shù)乘整數(shù)》教學(xué)反思,希望能夠幫助到大家。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 1
一、引導(dǎo)自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義。
1、導(dǎo)入新課時(shí),引導(dǎo)學(xué)生涂色表示3個(gè)米,目的是讓學(xué)生認(rèn)識(shí)到求3個(gè)米可以用加法計(jì)算,也可以用乘法計(jì)算,再借助所列的加法算式初步理解分?jǐn)?shù)與整數(shù)相乘的意義,并為引導(dǎo)學(xué)生探索分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法進(jìn)行了知識(shí)結(jié)構(gòu)上的鋪墊。
2、通過(guò)交流與討論,引導(dǎo)學(xué)生主動(dòng)聯(lián)系已有的知識(shí)經(jīng)驗(yàn)進(jìn)行分析、歸納和類(lèi)推,進(jìn)一步發(fā)展學(xué)生合情推理能力,體驗(yàn)探索學(xué)習(xí)的樂(lè)趣。
二、加強(qiáng)過(guò)程體驗(yàn),體會(huì)過(guò)程約分比結(jié)果約分更簡(jiǎn)便。
在解決例1的`第(2)題時(shí),我在處理算法多樣化與算法優(yōu)化時(shí)設(shè)計(jì)了88×8/11=?的練習(xí),讓學(xué)生用兩種方法計(jì)算,加強(qiáng)過(guò)程體驗(yàn),學(xué)生通過(guò)親身體驗(yàn)后,體會(huì)到過(guò)程約分比結(jié)果約分更簡(jiǎn)便且不易錯(cuò),形成一種內(nèi)在需求,優(yōu)化算法。
存在不足:
本課算理強(qiáng)調(diào)還不夠,特別是練一練第1題,在學(xué)生獨(dú)立完成后,我在組織交流時(shí)不夠充分,只交流了學(xué)生的計(jì)算方法和結(jié)果,忽視了學(xué)生是如何涂出4個(gè)3/16的,后來(lái)我發(fā)現(xiàn)學(xué)生涂得方法很多,其實(shí)通過(guò)學(xué)生涂色寫(xiě)算式,可以溝通分?jǐn)?shù)乘法和分?jǐn)?shù)加法間的聯(lián)系,進(jìn)一步體會(huì)分?jǐn)?shù)與整數(shù)相乘的意義,體會(huì)“求幾個(gè)幾分之幾相加的和”可以用乘法計(jì)算的算理,我沒(méi)有很好地把握教材這一練習(xí)設(shè)計(jì)的意圖,沒(méi)有敏銳地把握教學(xué)資源,很好地鞏固算理。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 2
分?jǐn)?shù)乘整數(shù)是“分?jǐn)?shù)乘法”教學(xué)的第一課時(shí),是學(xué)生理解分?jǐn)?shù)乘法意義的起點(diǎn)。這部分教材是在學(xué)生已學(xué)的整數(shù)乘法的意義和分?jǐn)?shù)加法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。
在教學(xué)中,我充分利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),努力結(jié)合現(xiàn)實(shí)的問(wèn)題情境,將計(jì)算學(xué)習(xí)與解決問(wèn)題有機(jī)結(jié)合,放手讓學(xué)生自主探究分?jǐn)?shù)乘法的意義。創(chuàng)設(shè)學(xué)生喜歡的實(shí)際情境,讓學(xué)生根據(jù)實(shí)際問(wèn)題的'數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動(dòng)地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來(lái),即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個(gè)相同加數(shù)和的簡(jiǎn)便運(yùn)算。
在教學(xué)分?jǐn)?shù)和整數(shù)相乘的計(jì)算法則時(shí),我指導(dǎo)學(xué)生從讀一讀,說(shuō)一說(shuō),練一練,想一想,議一議五個(gè)方面入手,例如:教學(xué)3/10×5,首先讓學(xué)生明確,要求3/10×5,也就是求3/10+3/10?3/10+3/10+3/10是多少,并聯(lián)系同分母分?jǐn)?shù)加法的計(jì)算得出3+3+3+3+3/10,然后讓學(xué)生分析分子部分5個(gè)3連加就是35,并算出結(jié)果,在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察計(jì)算過(guò)程,特別是3/10×5與35/10之間的聯(lián)系,從而理解為什么“同分子和整數(shù)相乘的積作分子,分母不變”。接著讓學(xué)生自己嘗試練一練7/10×5,然后進(jìn)行集體交流,看一看能不能在相乘之前的那一步先約分,比一比在什么時(shí)候約分計(jì)算可以簡(jiǎn)便一些,從而明白為了簡(jiǎn)便,能約分的先約分。
總之,本節(jié)課我能盡量調(diào)動(dòng)學(xué)生的多種感官,改變以例題、示范、講解為主的教學(xué)方式,改變以記憶法則、機(jī)械訓(xùn)練為主的學(xué)習(xí)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)之中,讓學(xué)生變被動(dòng)為主動(dòng),參與到算理的探討、運(yùn)算規(guī)律的歸納中來(lái)。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 3
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課堂的開(kāi)始環(huán)節(jié),我對(duì)這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。
分?jǐn)?shù)乘整數(shù)的算法很簡(jiǎn)單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知畫(huà)、涂圖形的過(guò)程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。再者,對(duì)“分?jǐn)?shù)乘整數(shù)表示的意義”也有機(jī)的滲透,為后面的.知識(shí)打好鋪墊。
一堂課上下來(lái),由于學(xué)生對(duì)內(nèi)容比較容易接受,課堂上有了空余時(shí)間。學(xué)生對(duì)算理的理解比較清晰,但還存在的問(wèn)題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對(duì)計(jì)算過(guò)程約分還不愿意采用。這一環(huán)節(jié)還應(yīng)講深講透。學(xué)生可能對(duì)于這種在計(jì)算過(guò)程當(dāng)中的約分,還是一知半解,對(duì)這樣約分的道理理解得不夠清楚。學(xué)習(xí)分?jǐn)?shù)乘整數(shù),學(xué)生在計(jì)算時(shí)肯定會(huì)遇到先約分后乘還是先乘后約分的問(wèn)題。如果僅僅是為得到一個(gè)正確的結(jié)果,那么無(wú)論前者,還是后者,都無(wú)關(guān)緊要,只要不出差錯(cuò),最后都能得到正確結(jié)果。顯然,我們還需要學(xué)生養(yǎng)成良好的計(jì)算習(xí)慣,較高的計(jì)算速度和計(jì)算正確率!那么我們就必須讓學(xué)生明白到底哪種思路更合理,更有助于自己的后續(xù)學(xué)習(xí)。作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對(duì)于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。在教學(xué)分?jǐn)?shù)乘法在過(guò)程中約分時(shí),我給學(xué)生練習(xí)的題目是: ×5,并且列出兩種做法讓學(xué)生進(jìn)行比較。但我覺(jué)得這道題并不能體現(xiàn)在計(jì)算過(guò)程中先約分的優(yōu)越性。應(yīng)該將題目改得稍復(fù)雜些,變成“13× 5/26”,并且和同學(xué)們一起比賽誰(shuí)做得快。如果哪位學(xué)生是用整數(shù)直接乘以分子的,速度當(dāng)然會(huì)很慢,當(dāng)做得最快的同學(xué)展示自己的做法時(shí),其他同學(xué)恍然大悟,深刻體會(huì)到計(jì)算過(guò)程中先約分,可以化繁為簡(jiǎn)。這樣,學(xué)生在做分?jǐn)?shù)乘法時(shí),不僅僅滿足于“分子和整數(shù)相乘的積作分子,分母不變”,而是記住“能約分的要約分”這一要點(diǎn)。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 4
把這次公開(kāi)課選為《分?jǐn)?shù)乘整數(shù)》這一內(nèi)容,是因?yàn)樯蠈W(xué)年聽(tīng)了冬梅老師講了若干遍《分?jǐn)?shù)乘分?jǐn)?shù)》,并一舉在市名列前茅。我選了《分?jǐn)?shù)乘分?jǐn)?shù)》的前一信息窗,內(nèi)容相對(duì)來(lái)說(shuō)比較簡(jiǎn)單。對(duì)此類(lèi)課的教學(xué)思路有了一定的了解,感覺(jué)有信心上好這節(jié)課。
課堂上,我是按照事先設(shè)計(jì)好的方案一步一步地進(jìn)行著。結(jié)果第一環(huán)節(jié)提出數(shù)學(xué)問(wèn)題,根據(jù)已有的經(jīng)驗(yàn)列出算式就出了問(wèn)題,我提出:“‘求做一個(gè)風(fēng)箏一共需要多少米布條?’其實(shí)就是求什么?”。一下子把孩子問(wèn)在那里了。周折了一小會(huì)兒才開(kāi)始列式計(jì)算了。緊接著第二個(gè)環(huán)節(jié)列式計(jì)算,并理解分?jǐn)?shù)乘整數(shù)算式的意義還好。很順利地進(jìn)行到第三個(gè)環(huán)節(jié)學(xué)習(xí)計(jì)算方法。大部分學(xué)生都用分母不變,只把分子與整數(shù)相乘的方法計(jì)算的。我不失時(shí)機(jī)地啟發(fā)學(xué)生思考:為什么只把分子與整數(shù)相乘呢?比比看誰(shuí)的`理由最充分。這時(shí)學(xué)生們都陷入了思考,帶著“為什么”去探索。在課堂上迫不及待。積極主動(dòng)地進(jìn)行討論,在理清算理的基礎(chǔ)上通過(guò)課件演示總結(jié)出法則。這一環(huán)節(jié)我自己還比較滿意。到了第四環(huán)節(jié),通過(guò)法則指導(dǎo)計(jì)算,并學(xué)會(huì)簡(jiǎn)便方法約分時(shí),又出問(wèn)題了,學(xué)生不理解為什么約分后的分子相乘分?jǐn)?shù)的大小還不變,一直在那里糾結(jié),足足耽誤了將近十分鐘的練習(xí)時(shí)間。
通過(guò)評(píng)課,同行們給我找明了問(wèn)題的關(guān)鍵:
1、教師在第一環(huán)節(jié)的提問(wèn)繞圈子了,不要問(wèn)學(xué)生“要求這個(gè)問(wèn)題就是求什么?”直接讓學(xué)生列式解答即可。在列式的基礎(chǔ)上讓學(xué)生自己發(fā)現(xiàn)6個(gè)相加可以寫(xiě)成×6的形式,從而明白分?jǐn)?shù)乘整數(shù)的意義。
2、在探究算法的過(guò)程中,應(yīng)當(dāng)與算理相融合,一位同學(xué)探究說(shuō)出算理和算法以后,應(yīng)該結(jié)合課件再多找?guī)讉(gè)學(xué)生強(qiáng)化一下,這樣落實(shí)面才會(huì)更廣一些。
3、當(dāng)學(xué)生提出對(duì)于約分環(huán)節(jié)的不理解時(shí),教師不要急于解釋?zhuān)勺屍湓诰毩?xí)的基礎(chǔ)上驗(yàn)證一下,或告知其下課后繼續(xù)研究,一定不要把時(shí)間浪費(fèi)在與個(gè)別學(xué)生糾結(jié)一些價(jià)值不大的問(wèn)題。教師要有主觀能控力。
4、分?jǐn)?shù)的書(shū)寫(xiě)順序要注意標(biāo)準(zhǔn)。
聽(tīng)了大家伙的建議,自己感覺(jué)很有道理,不再去鄰班講一次真對(duì)不住朋友們提出的這些大好建議。感謝教研組的評(píng)課,各路高手就像是一位位神醫(yī),幫我查找到這節(jié)課的各種病癥,只不過(guò)要想醫(yī)治成功還需要“患者”的努力。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 5
本單元有很重要的地位,它既在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)的意義和性質(zhì)、分?jǐn)?shù)加減法以及約分等知識(shí)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,又是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法、比、分?jǐn)?shù)四則混合運(yùn)算及百分?jǐn)?shù)知識(shí)的重要基礎(chǔ)。于是,我教學(xué)時(shí)就從學(xué)生的已有知識(shí)基礎(chǔ)和生活經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生在解決實(shí)際問(wèn)題的情境中,理解分?jǐn)?shù)乘整數(shù)的意義。
一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。
開(kāi)頭依據(jù)知識(shí)的遷移,進(jìn)行很必要的鋪墊,利用知識(shí)間的聯(lián)系,精心設(shè)置復(fù)習(xí)題,為教學(xué)重點(diǎn)服務(wù),使學(xué)生順利掌握“分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法意義相同”。同時(shí)復(fù)習(xí)相同分?jǐn)?shù)加法,為推導(dǎo)計(jì)算方法進(jìn)行鋪墊。
在第一次教學(xué)《分?jǐn)?shù)乘整數(shù)》之后,其實(shí)班里已經(jīng)有許多學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序(呈現(xiàn)問(wèn)題——探討研究——得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會(huì)覺(jué)得“這些知識(shí)我早就知道了,沒(méi)什么可學(xué)的'了!,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動(dòng)不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時(shí),我故意將分?jǐn)?shù)乘整數(shù)的結(jié)論“灌輸”給學(xué)生,省去了獲取結(jié)論的研究過(guò)程,意在讓學(xué)生問(wèn)“為什么”。這時(shí)學(xué)生抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母10不和3相乘?”接下來(lái)的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。將例1進(jìn)一步作為驗(yàn)證計(jì)算方法的題材。由質(zhì)疑開(kāi)始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動(dòng)探索,因此學(xué)生在課堂上迫不及待地,積極主動(dòng)地進(jìn)行討論,從不同的角度解決疑問(wèn)。
二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個(gè)性化。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對(duì)需要解決的問(wèn)題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來(lái)構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問(wèn)題時(shí)會(huì)有不同的視角。在本節(jié)課中,教師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過(guò)對(duì)分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來(lái)思考;有的學(xué)生通過(guò)計(jì)算分?jǐn)?shù)單位的個(gè)數(shù)來(lái)理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果;也有的學(xué)生通過(guò)生動(dòng)的數(shù)學(xué)實(shí)例進(jìn)行了分析。由此我深深地體會(huì)到,包或教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫(xiě)者的意圖去思考和解決問(wèn)題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。
三、反思不足,提煉經(jīng)驗(yàn)。
本節(jié)課的重點(diǎn)是得出分?jǐn)?shù)乘整數(shù)的計(jì)算方法,約分時(shí),只能將分母與整數(shù)約分。我還沒(méi)有完全放手讓學(xué)生自己總結(jié)出計(jì)算方法,沒(méi)時(shí)間多練。對(duì)學(xué)生還是不放心,老師講得太多,強(qiáng)調(diào)的主題太多,一些注意事項(xiàng)沒(méi)有變成學(xué)生的語(yǔ)言,讓學(xué)生去發(fā)現(xiàn),去解決,從而記憶不是很深刻。我覺(jué)得補(bǔ)充的內(nèi)容較多,各種題型的練習(xí),讓課堂顯得時(shí)間太緊張,其實(shí)我太注重題海戰(zhàn)術(shù),沒(méi)有讓學(xué)生充分掌握好,跑得太快。只顧及到了成績(jī)好的學(xué)生,從這一點(diǎn),我深深體會(huì)到什么是“備教材”,“備學(xué)生”。課前要把知識(shí)點(diǎn)吃透把握住重點(diǎn)、難點(diǎn),哪些要補(bǔ)充,哪些地方要?jiǎng)?chuàng)造性使用教材。學(xué)生以一個(gè)什么樣的方式更容易接受,老師哪些地方該講不該講,都需要我們深思熟慮。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 6
在教學(xué)分?jǐn)?shù)乘整數(shù)之前,班里已經(jīng)有不少學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會(huì)覺(jué)得“這些知識(shí)我早就知道了,沒(méi)什么可學(xué)的了!,從而失去學(xué)習(xí)的興趣。于是在教學(xué)時(shí),我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來(lái)的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去學(xué)習(xí)。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對(duì)需要解決的問(wèn)題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來(lái)構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問(wèn)題時(shí)會(huì)有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進(jìn)行多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過(guò)對(duì)分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來(lái)思考;有的學(xué)生通過(guò)在老師給的練習(xí)紙上涂色來(lái)得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的.道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了結(jié)果。
存在的一些問(wèn)題。
讓學(xué)生體會(huì)先約分比較簡(jiǎn)單時(shí),出現(xiàn)了些問(wèn)題。在做完例題第二個(gè)問(wèn)題之后,依然有不少學(xué)生依然覺(jué)得先計(jì)算好,于是我就出示了四道題,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺(jué)得,如果在例題教學(xué)完之后就直接完成那個(gè)8/11×99,這樣就更加直接了,學(xué)生立刻就能體會(huì)到先約分的好處了,那么再做其它需要進(jìn)行約分的題目就方便了。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 7
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課堂的開(kāi)始環(huán)節(jié),我對(duì)這些內(nèi)容進(jìn)了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。分?jǐn)?shù)乘整數(shù)的算法很簡(jiǎn)單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知涂圖形的過(guò)程。
一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)
從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),復(fù)習(xí)幾個(gè)相同分?jǐn)?shù)和的計(jì)算方法。從而讓學(xué)生感知分?jǐn)?shù)乘法的意義-----求幾個(gè)相同分?jǐn)?shù)和的簡(jiǎn)便運(yùn)算。在此基礎(chǔ)上學(xué)生很容易從加法的角度聯(lián)想到分?jǐn)?shù)乘整數(shù)的方法,這種順向遷移,對(duì)學(xué)生的學(xué)習(xí)作用很大。在學(xué)生研究分?jǐn)?shù)乘法的計(jì)算方法中,用以前所學(xué)的知識(shí)來(lái)解釋和理解分?jǐn)?shù)乘整數(shù)的計(jì)算方法,學(xué)生理解起來(lái)也很容易。教師運(yùn)用新知與舊識(shí)的.密切聯(lián)系,讓學(xué)生在認(rèn)知的最近發(fā)展領(lǐng)域自由學(xué)習(xí)并有所收獲,學(xué)生的學(xué)習(xí)是積極有效的。
二、讓學(xué)生感受,學(xué)生才會(huì)感悟
對(duì)于學(xué)生而言,計(jì)算方法沒(méi)有難度。但是形成先約分后計(jì)算的計(jì)算習(xí)慣確實(shí)在教學(xué)中的難點(diǎn)。來(lái)自學(xué)生的困惑:為什么一定要先約分,不約分也可以計(jì)算出結(jié)果。只有讓學(xué)生真正感受到約分的優(yōu)勢(shì),以及不約分計(jì)算的弊端,學(xué)生才會(huì)自發(fā)的先約分后計(jì)算。先設(shè)計(jì)簡(jiǎn)單的數(shù)據(jù),學(xué)生既可以先約分再計(jì)算,也可以先計(jì)算再約分。因?yàn)閿?shù)據(jù)簡(jiǎn)單,所以無(wú)論哪一種學(xué)生都可以得到正確答案。再設(shè)計(jì)7/22×33這道題,學(xué)生先計(jì)算后數(shù)據(jù)比較大,看不出公因數(shù)沒(méi)有辦法約分。所以學(xué)生中出現(xiàn)兩種答案。這時(shí)兩種方法進(jìn)行比較,感受先約分?jǐn)?shù)據(jù)小容易,先計(jì)算數(shù)據(jù)大很難約分。只有經(jīng)歷過(guò)這種錯(cuò)誤的學(xué)生才有深刻的感受------先約分再計(jì)算,計(jì)算更方便。
三、掌握方法、提高計(jì)算能力
在這節(jié)課上,重點(diǎn)讓學(xué)生理解和掌握的分?jǐn)?shù)乘整數(shù)的計(jì)算方法,但是學(xué)生的計(jì)算能力的訓(xùn)練體現(xiàn)的不多。如果學(xué)生在課堂上的計(jì)算能力能夠有所提高,這樣一節(jié)計(jì)算課的效果就更好了。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 8
自我反思有助于改造和提升教師的教學(xué)經(jīng)驗(yàn),經(jīng)驗(yàn)+反思=成長(zhǎng),只有經(jīng)過(guò)反思,使原始的經(jīng)驗(yàn)不斷地處于被審視、被修正、被強(qiáng)化、被否定等思維加工中,去粗存精,去偽存真,這樣經(jīng)驗(yàn)才會(huì)得到提煉、得到升華,從而成為一種開(kāi)放性的系統(tǒng)和理性的力量,唯其如此,經(jīng)驗(yàn)才能成為促進(jìn)教師專(zhuān)業(yè)成長(zhǎng)的有力杠桿。閱讀這篇數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》,和小編來(lái)感受它的魅力吧!
在教學(xué)“分?jǐn)?shù)乘整數(shù)計(jì)算法則”時(shí),我從一道計(jì)算題入手,讓學(xué)生聯(lián)系生活實(shí)際,創(chuàng)設(shè)問(wèn)題情境,較好地體現(xiàn)了學(xué)生學(xué)習(xí)的主體性,溝通了數(shù)學(xué)與生活實(shí)際的聯(lián)系,使學(xué)生認(rèn)識(shí)到“數(shù)學(xué)”是生活中的數(shù)學(xué),是有用的數(shù)學(xué)。同時(shí)這道計(jì)算題還溝通了與新的知識(shí)的聯(lián)系,引出了分?jǐn)?shù)乘整數(shù)的意義,并能讓學(xué)生憑借這個(gè)知識(shí)點(diǎn),探索出分?jǐn)?shù)乘整數(shù)的計(jì)算法則。在教學(xué)分?jǐn)?shù)乘整數(shù)的計(jì)算法則時(shí),我還注重了放手讓學(xué)生去探索,注重了學(xué)生的合作交流,通過(guò)討論發(fā)現(xiàn)知識(shí)的奧秘,通過(guò)交流拓寬全體學(xué)生的`知識(shí)面。由此我深深地體會(huì)到,教師不能要求學(xué)生按照我們成人的或者教材編寫(xiě)者的意圖去思考和解決問(wèn)題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。我們教師在課堂上只是學(xué)生的引路人,是導(dǎo)師
這則數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》希望能給你的學(xué)習(xí)生活增添益處。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 9
反思本節(jié)課,無(wú)論是教學(xué)目標(biāo)的定位,還是教學(xué)過(guò)程的組織,都反映出一種新的教學(xué)理念。我認(rèn)為主要有以下幾個(gè)方面:
一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)
新課程標(biāo)準(zhǔn)指出:“要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們?cè)诮虒W(xué)活動(dòng)中所表現(xiàn)出來(lái)的情感和態(tài)度!睘榇耍處熢诮虒W(xué)中為了讓學(xué)生能真正主動(dòng)地、投入地參與到探究過(guò)程中來(lái),就應(yīng)該設(shè)法讓其在一開(kāi)始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識(shí)本身的特點(diǎn),又兼顧學(xué)生的認(rèn)知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問(wèn)題的挑戰(zhàn)性和可探索性,從而產(chǎn)生“我也來(lái)研究研究這個(gè)問(wèn)題”的興趣。這節(jié)課一開(kāi)始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計(jì)算方法這一過(guò)程,使學(xué)生發(fā)現(xiàn)并掌握分?jǐn)?shù)單位乘分?jǐn)?shù)單位的計(jì)算方法。由于在這個(gè)過(guò)程中討論的素材都來(lái)源于學(xué)生,他們討論自己的學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過(guò)自己的努力,尋找出“我的發(fā)現(xiàn)”,而對(duì)自己尋找出的法則印象特別深,同時(shí)又產(chǎn)生了繼續(xù)探索、驗(yàn)證兩個(gè)一般分?jǐn)?shù)相乘的計(jì)算方法的欲望。
二、關(guān)注結(jié)論,更關(guān)注過(guò)程
傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解“分?jǐn)?shù)乘分?jǐn)?shù)”的算理,再利用其計(jì)算法則進(jìn)行大量練習(xí),以實(shí)現(xiàn)“熟能生巧”!靶抡n程標(biāo)準(zhǔn)”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過(guò)程!边@一新的理念說(shuō)明:數(shù)學(xué)教學(xué)活動(dòng)將是學(xué)生經(jīng)歷的 一個(gè)數(shù)學(xué)化的過(guò)程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。因此,教學(xué)本課時(shí)力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過(guò)程,即讓學(xué)生在動(dòng)手操作——探究算法-舉例驗(yàn)證——交流評(píng)價(jià)——法則整理等一系列活動(dòng)中經(jīng)歷“分?jǐn)?shù)乘分?jǐn)?shù)”計(jì)算法則的形成過(guò)程。這里實(shí)現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗(yàn)、去創(chuàng)造,同時(shí)也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識(shí)的培養(yǎng),我深信這比單純掌握計(jì)算方法再熟練生巧更有意義。
三、 科學(xué)的學(xué)習(xí)方法的滲透
新課程標(biāo)準(zhǔn)指出:“幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)!彼越處熢谝龑(dǎo)學(xué)生經(jīng)過(guò)不斷思考獲得規(guī)律的過(guò)程中,著眼點(diǎn)不能知識(shí)規(guī)律的本身,更重要的是一種“發(fā)現(xiàn)”的.體驗(yàn)。在這種體驗(yàn)中感受數(shù)學(xué)的思維方法,體會(huì)科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計(jì)上是由“特殊”去引發(fā)學(xué)生的猜想,再來(lái)舉例驗(yàn)證,然后歸納概括,力圖讓學(xué)生體會(huì)從特殊到一般的不完全歸納思想。首先讓學(xué)生通過(guò)活動(dòng)概括得出“分?jǐn)?shù)乘分?jǐn)?shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”即可的計(jì)算方法,再由學(xué)生自己用折紙、化小數(shù)、分?jǐn)?shù)的意義等方法來(lái)驗(yàn)證這種計(jì)算方法,發(fā)現(xiàn)了“分?jǐn)?shù)乘分?jǐn)?shù),分子不變,分母相乘”特殊性,以及“分?jǐn)?shù)乘分?jǐn)?shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實(shí)事求是的科學(xué)精神。
四、 困惑之處
如何關(guān)注全體?本課第一階段研究“幾分之幾乘幾分之幾”時(shí),由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動(dòng)地參與到了探究的過(guò)程。而到第二階段去驗(yàn)證交流“幾分之幾乘幾分之幾”中,除了用折紙法驗(yàn)證交流外,其余的環(huán)節(jié)幾乎都被幾名“優(yōu)等生”“占領(lǐng)”,雖然教師多次這樣引導(dǎo):“誰(shuí)能聽(tīng)懂他的意思?你能再解釋一下嗎?”,“用他的方法去試試看!钡糠謱W(xué)生還是不能參與其中,成了“伴學(xué)者”。所以,如何面對(duì)學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個(gè)課題。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 10
“分?jǐn)?shù)乘整數(shù)”在練習(xí)中,50%的學(xué)生喜歡用分?jǐn)?shù)加法的計(jì)算方法來(lái)做分?jǐn)?shù)乘法。學(xué)生利用式題,不但總結(jié)出了分?jǐn)?shù)乘整數(shù)的計(jì)算方法,而且知道了算理(也就是分?jǐn)?shù)乘整數(shù)的意義),真正做到了算理與算法相結(jié)合。
基于這兩者天壤之別,筆者有了深深的感觸,上述兩個(gè)案例讓我想到一個(gè)相同的問(wèn)題,就是我們常說(shuō)的備課之先“備學(xué)生”到底備到什么程度?對(duì)于學(xué)生的知識(shí)前測(cè),教師心中有多大的把握?沒(méi)有對(duì)學(xué)情準(zhǔn)確的偵察”,便絕對(duì)不會(huì)”打贏”有效教學(xué)乃至高效教學(xué)這一勝仗。很多教師在備學(xué)生的時(shí)候,是借用別人的眼光來(lái)估計(jì)自己的學(xué)生,看教參上是怎么說(shuō)的。教參說(shuō)這時(shí)的學(xué)生應(yīng)該具有什么樣的知識(shí)經(jīng)驗(yàn),教師便堅(jiān)信自己的學(xué)生也定是如此了。沒(méi)有或者很少考慮到雖然是同一個(gè)年齡段的孩子,但還有諸多不同的因素:也許你的學(xué)生是后進(jìn)的,他的基礎(chǔ)沒(méi)你想象的那么牢固;也許他是絕頂聰明的,學(xué)習(xí)進(jìn)度已經(jīng)超過(guò)好多課業(yè)了。
如上述案例中,關(guān)注學(xué)生轉(zhuǎn)化的思想就是本課時(shí)教學(xué)的重中之重.數(shù)學(xué)知識(shí)有著本身固有的結(jié)構(gòu)體系,往往是新知孕伏于舊知,舊知識(shí)點(diǎn)是新知識(shí)點(diǎn)的生長(zhǎng)點(diǎn),數(shù)學(xué)教學(xué)如何讓知識(shí)體系由點(diǎn)到線,線到面,使知識(shí)結(jié)構(gòu)“見(jiàn)木又見(jiàn)林”是十分必要的。案例1從整數(shù)乘法遷移到分?jǐn)?shù)乘整數(shù),想法是可取的,但整數(shù)乘法的意義在二上年級(jí)就已經(jīng)出現(xiàn),而且教材中沒(méi)有出現(xiàn)整數(shù)乘法的抽象表達(dá)方式(即整數(shù)乘法表示求幾個(gè)相同加數(shù)的和),對(duì)于五下年級(jí)的學(xué)生來(lái)說(shuō),遺忘程度可想而知。而案例2中,以五上年級(jí)的分?jǐn)?shù)加法為基礎(chǔ),讓學(xué)生自由探索,效果是非常明顯的。轉(zhuǎn)化是需要條件的,只要“跳一跳”,就能摘到“桃子”,學(xué)生才會(huì)去嘗試。
今天這節(jié)課的算理看似簡(jiǎn)單,其實(shí)理解還是有困難的'.根據(jù)學(xué)生的認(rèn)知心理,在遇到一個(gè)陌生的問(wèn)題,如”1/5×3=?”時(shí),學(xué)生對(duì)算法的興趣遠(yuǎn)遠(yuǎn)勝于算理.因?yàn)樗惴ǹ梢灾苯拥玫浇Y(jié)果。一旦知道算法,多數(shù)學(xué)生會(huì)對(duì)算理失去興趣。甚至為了考試成績(jī)?nèi)ニ烙浻脖乘憷,算法與算理完全脫離。那么我們實(shí)際上不是教數(shù)學(xué),而是在教一門(mén)計(jì)算程序:不是在培養(yǎng)研究者,而是在訓(xùn)練操作工。這與”學(xué)生能夠獲得適應(yīng)未來(lái)社會(huì)生活和進(jìn)一步發(fā)展所必需的重要數(shù)學(xué)知識(shí)以及基本的思想方法和必要的應(yīng)用技能”相違背的。
數(shù)學(xué)思想方法內(nèi)容十分豐富,學(xué)生一接觸到數(shù)學(xué)知識(shí),就聯(lián)系上許多數(shù)學(xué)思想方法。寓理于算的思想就是小學(xué)數(shù)學(xué)中的基本思想方法。在教學(xué)時(shí),把重點(diǎn)放在讓學(xué)生充分體驗(yàn)由直觀算理到抽象算法的過(guò)渡和演變過(guò)程,從而達(dá)到對(duì)算理的深層理解和對(duì)算法的切實(shí)把握。小學(xué)是打基礎(chǔ)的教育,有了算理的支撐,算法才會(huì)多樣化,課堂才會(huì)更開(kāi)放。
課標(biāo)中,原來(lái)講“雙基”,現(xiàn)在變成“四基”,多了基本思想、基本活動(dòng)經(jīng)驗(yàn),筆者認(rèn)為,只有具備了基本思想、基本活動(dòng)經(jīng)驗(yàn),才能在思維上促進(jìn)基本知識(shí)、基本技能的發(fā)展。不但教給學(xué)生一個(gè)表層的知識(shí),更要給學(xué)生思維的方法與思想。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 11
一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。
在教學(xué)分?jǐn)?shù)乘整數(shù)之前,其實(shí)班里已經(jīng)有不少學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會(huì)覺(jué)得“這些知識(shí)我早就知道了,沒(méi)什么可學(xué)的了。”,從而失去探究的興趣。于是在教學(xué)時(shí),我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來(lái)的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。
二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個(gè)性化。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對(duì)需要解決的問(wèn)題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來(lái)構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問(wèn)題時(shí)會(huì)有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過(guò)對(duì)分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來(lái)思考;有的學(xué)生通過(guò)在老師給的練習(xí)紙上涂色來(lái)得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會(huì)到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫(xiě)者的'意圖去思考和解決問(wèn)題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。
三、對(duì)教材進(jìn)行重組。
本節(jié)課時(shí)一節(jié)枯燥乏味的計(jì)算課,因此我利用烏龜和兔子進(jìn)行智力比賽的方式來(lái)刺激學(xué)生求知解題的欲望,讓孩子們?cè)诔錆M競(jìng)爭(zhēng)和挑戰(zhàn)的環(huán)境氛圍下,不知不覺(jué)地完成書(shū)本上的基本練習(xí)。當(dāng)然我也對(duì)教材的聯(lián)系題目進(jìn)行了重組和改編。如練一練第一題,我就把4個(gè)改成了3個(gè),這樣就使得這題避免約分,先解決不用約分的計(jì)算方法,再進(jìn)行約分的教學(xué)。使整節(jié)課自然分成兩部分來(lái)進(jìn)行。
四、存在的一些問(wèn)題。
本節(jié)課總體來(lái)說(shuō)比較成功,課堂上的內(nèi)容都比較順利的完成了,但是在讓學(xué)生體會(huì)先約分比較簡(jiǎn)單時(shí),出現(xiàn)了些問(wèn)題。在做完例題第二個(gè)問(wèn)題之后,依然有不少學(xué)生依然覺(jué)得先計(jì)算好,于是我就出示了四道題目,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺(jué)得,如果在例題教學(xué)完之后就直接完成那個(gè)8/11×99,這樣就更加直接了,學(xué)生立刻就能體會(huì)到先約分的好處了,那么再做其它需要進(jìn)行約分的題目就方便了。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 12
本節(jié)課我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個(gè)相同加數(shù)和的簡(jiǎn)便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。教學(xué)方法時(shí)我注重算理的講解、注重圖形和算式的聯(lián)系?梢哉f(shuō)這節(jié)課的內(nèi)容很簡(jiǎn)單,但作業(yè)反饋的情況看正確率卻很低。存在的問(wèn)題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,就比較愛(ài)出錯(cuò)。再由于上學(xué)期的約分知識(shí)很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯(cuò)誤和忘記約分的情況。
作為分?jǐn)?shù)乘法的'第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對(duì)于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 13
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課堂的開(kāi)始環(huán)節(jié),我對(duì)這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。
分?jǐn)?shù)乘整數(shù)的算法很簡(jiǎn)單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的'聯(lián)系,在計(jì)算前充分讓學(xué)生感知涂圖形的過(guò)程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。
三堂課上下來(lái),學(xué)生對(duì)算理的理解比較清晰。目前還存在的問(wèn)題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對(duì)計(jì)算過(guò)程約分還不愿意采用?赡軐(duì)于這種在計(jì)算過(guò)程當(dāng)中的約分,還是一知半解,對(duì)這樣約分的道理理解得不夠清楚。我在介紹這種辦法的時(shí)候還特意把要約分的分?jǐn)?shù)改寫(xiě)成分母和分子分別由幾個(gè)數(shù)相乘的形式,幫助學(xué)生理解?赡苓@樣做,還做得不夠吧?再由于上學(xué)期的約分知識(shí)很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯(cuò)誤和忘記約分的情況。
不知改進(jìn)這些問(wèn)題的辦法有哪些?是不是只能是讓學(xué)生多做一些練習(xí)題,通過(guò)不斷強(qiáng)化的辦法,讓他們掌握計(jì)算時(shí)各個(gè)環(huán)節(jié)應(yīng)注意的問(wèn)題?
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 14
一、利用已有知識(shí)引導(dǎo)學(xué)生實(shí)現(xiàn)正遷移。
《分?jǐn)?shù)乘整數(shù)》是分?jǐn)?shù)乘法單元的第一課時(shí),本課主要讓學(xué)生通過(guò)自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義,知道“求幾個(gè)幾分之幾相加的和”可以用乘法計(jì)算,初步理解并掌握分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法。而分?jǐn)?shù)與整數(shù)相乘的意義與整數(shù)相乘的意義相同,這節(jié)課在引入課題時(shí),葛文娟老師設(shè)計(jì)了下面的兩道習(xí)題:
。1)做一朵綢花要30厘米綢帶,小麗做3朵這樣的綢花,一共用多少厘米綢帶?
(2)做一朵綢花要0.3米綢帶,小紅做3朵這樣的綢花,一共用多少米綢帶?通過(guò)讓學(xué)生列式并追問(wèn)為什么都用乘法計(jì)算,激活學(xué)生已有的對(duì)整數(shù)乘法意義的認(rèn)識(shí)。然后再通過(guò)改題呈現(xiàn)例1:做一朵綢花要 米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?學(xué)生順理成章地列出了例1的乘法算式,通過(guò)我追問(wèn)這題為什么也用乘法計(jì)算?學(xué)生自然地將整數(shù)乘法的意義遷移到分?jǐn)?shù)乘整數(shù)的意義中,實(shí)現(xiàn)了知識(shí)的正遷移。
二、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,加強(qiáng)算法的探究。
在學(xué)習(xí)本課之前,其實(shí)已經(jīng)有許多學(xué)生大概知道了分?jǐn)?shù)乘整數(shù)的`計(jì)算方法,但對(duì)于為什么要這樣算就不清楚了。如果再按照一般的教學(xué)程序(呈現(xiàn)問(wèn)題——探討研究——得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會(huì)覺(jué)得“這些知識(shí)我早就知道了,沒(méi)什么可學(xué)的了!保瑥亩ヌ骄康呐d趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動(dòng)不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時(shí) ×3的算法時(shí),小葛老師問(wèn):你知道怎么乘嗎,你認(rèn)為整數(shù)3與分?jǐn)?shù)的什么相乘呢?重點(diǎn)讓學(xué)生明白為什么要這樣乘。抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母不變”接下來(lái)的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。由質(zhì)疑開(kāi)始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動(dòng)探索,因此學(xué)生在課堂上迫不及待地,積極主動(dòng)地進(jìn)行討論,從不同的角度解決疑問(wèn)。
二、實(shí)現(xiàn)教學(xué)的個(gè)性化,發(fā)展學(xué)生的思維。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對(duì)需要解決的問(wèn)題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來(lái)構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問(wèn)題時(shí)會(huì)有不同的視角。在本節(jié)課中,葛老師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過(guò)對(duì)分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來(lái)思考;有的學(xué)生通過(guò)計(jì)算分?jǐn)?shù)單位的個(gè)數(shù)來(lái)理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思 15
一、引導(dǎo)自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義。
1、導(dǎo)入新課時(shí),引導(dǎo)學(xué)生涂色表示3個(gè)米,目的是讓學(xué)生認(rèn)識(shí)到求3個(gè)米可以用加法計(jì)算,也可以用乘法計(jì)算,再借助所列的加法算式初步理解分?jǐn)?shù)與整數(shù)相乘的意義,并為引導(dǎo)學(xué)生探索分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法進(jìn)行了知識(shí)結(jié)構(gòu)上的鋪墊。
2、通過(guò)交流與討論,引導(dǎo)學(xué)生主動(dòng)聯(lián)系已有的知識(shí)經(jīng)驗(yàn)進(jìn)行分析、歸納和類(lèi)推,×3=?進(jìn)一步發(fā)展學(xué)生合情推理能力,體驗(yàn)探索學(xué)習(xí)的樂(lè)趣。
二、加強(qiáng)過(guò)程體驗(yàn),體會(huì)過(guò)程約分比結(jié)果約分更簡(jiǎn)便。
在解決例1的第(2)題時(shí),我在處理算法多樣化與算法優(yōu)化時(shí)設(shè)計(jì)了88×8/11 =?的練習(xí),讓學(xué)生用兩種方法計(jì)算,加強(qiáng)過(guò)程體驗(yàn),學(xué)生通過(guò)親身體驗(yàn)后,體會(huì)到過(guò)程約分比結(jié)果約分更簡(jiǎn)便且不易錯(cuò),形成一種內(nèi)在需求,優(yōu)化算法。存在不足:本課算理強(qiáng)調(diào)還不夠,特別是練一練第1題,在學(xué)生獨(dú)立完成后,我在組織交流時(shí)不夠充分,只交流了學(xué)生的.計(jì)算方法和結(jié)果,忽視了學(xué)生是如何涂出4個(gè)3/16的,后來(lái)我發(fā)現(xiàn)學(xué)生涂得方法很多,其實(shí)通過(guò)學(xué)生涂色寫(xiě)算式,可以溝通分?jǐn)?shù)乘法和分?jǐn)?shù)加法間的聯(lián)系,進(jìn)一步體會(huì)分?jǐn)?shù)與整數(shù)相乘的意義,體會(huì)"求幾個(gè)幾分之幾相加的和"可以用乘法計(jì)算的算理,我沒(méi)有很好地把握教材這一練習(xí)設(shè)計(jì)的意圖,沒(méi)有敏銳地把握教學(xué)資源,很好地鞏固算理。
【《分?jǐn)?shù)乘整數(shù)》教學(xué)反思】相關(guān)文章:
分?jǐn)?shù)乘整數(shù)的教學(xué)反思02-26
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思02-12
分?jǐn)?shù)乘整數(shù)教學(xué)反思02-26
分?jǐn)?shù)乘整數(shù)教學(xué)反思05-02
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思02-25
分?jǐn)?shù)乘整數(shù)教學(xué)反思15篇03-02
分?jǐn)?shù)乘整數(shù)教學(xué)反思(15篇)03-15