圓柱的體積教學(xué)反思【實(shí)用15篇】
身為一名到崗不久的老師,我們的任務(wù)之一就是課堂教學(xué),對(duì)學(xué)到的教學(xué)新方法,我們可以記錄在教學(xué)反思中,教學(xué)反思應(yīng)該怎么寫(xiě)呢?以下是小編為大家整理的圓柱的體積教學(xué)反思,僅供參考,大家一起來(lái)看看吧。
圓柱的體積教學(xué)反思1
《圓柱的體積》不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過(guò)程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過(guò)觀察,作出猜測(cè):
。1)圓柱的體積等于長(zhǎng)方體和正方體的體積。
。2)圓柱的體積也等于底面積乘高。
猜測(cè)是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過(guò)程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過(guò)程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒(méi)變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過(guò)程是我沒(méi)有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。我沒(méi)有否定她的回答,接著又讓學(xué)生動(dòng)手實(shí)踐操作,讓學(xué)生發(fā)現(xiàn)長(zhǎng)方體與圓柱之間的聯(lián)系,利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
在本節(jié)課的教學(xué)過(guò)程中還存在諸多的問(wèn)題。
1、演示圓柱的.體積的時(shí)候,因?yàn)閷W(xué)生手中沒(méi)有學(xué)具,教師教具的局限性,演示時(shí)后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過(guò)切割、拼接之后轉(zhuǎn)化為近似長(zhǎng)方體的時(shí)候,應(yīng)多給后進(jìn)生留有觀察、討論的時(shí)間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時(shí)間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。
3、在解決實(shí)際問(wèn)題的時(shí)候,不僅要注重公式的應(yīng)用,還要注意計(jì)算能力的培養(yǎng)。
圓柱的體積教學(xué)反思2
圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。通過(guò)對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過(guò)程,會(huì)計(jì)算圓柱的體積;體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來(lái)到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂(lè)于探索,善于探究。
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過(guò)程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的`水的體積你會(huì)求嗎?圓柱形橡皮泥的體積你會(huì)求嗎?)學(xué)生經(jīng)過(guò)思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問(wèn)題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問(wèn)題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來(lái)的辦法嗎?這一問(wèn)題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問(wèn)題中思考尋求一種更廣泛的方法來(lái)解決圓柱體體積的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過(guò)程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問(wèn)題,可以怎么辦?采用小組討論交流的形式。有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過(guò)討論得出:把圓柱的底面沿直徑分成若干等份。小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長(zhǎng)方體。同學(xué)們?cè)诓僮、比較中,圍繞圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過(guò)實(shí)驗(yàn)、操作、自主探究,實(shí)現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。教學(xué)中通過(guò)等分、切、拼將圓柱體拼成一個(gè)近似的長(zhǎng)方體,再運(yùn)用多媒體顯示由圓柱體到近似的長(zhǎng)方體的變換過(guò)程,讓學(xué)生觀察、比較近似長(zhǎng)方
體與圓柱的關(guān)系,使圓柱體體積的計(jì)算公式推導(dǎo)過(guò)程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動(dòng)探究、樂(lè)于發(fā)現(xiàn)的需要、動(dòng)機(jī)和能力。
三、建立切拼表象,滲透極限思想
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),由于條件的限制,沒(méi)有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開(kāi)后,拼起來(lái)的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生基本沒(méi)有親身參與操作,很遺憾。
圓柱的體積教學(xué)反思3
圓柱的體積計(jì)算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過(guò)程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過(guò)觀察,作出猜測(cè):
。1)圓柱的體積等于長(zhǎng)方體和正方體的'體積。
。2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?
點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過(guò)程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過(guò)程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒(méi)變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過(guò)程是我沒(méi)有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。首先我對(duì)這種方法加以肯定,然后利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
圓柱的體積教學(xué)反思4
今天上了《圓柱的體積》一課,覺(jué)得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過(guò)程,頗有幾分感受:
在本課中,當(dāng)學(xué)生面對(duì)新的問(wèn)題情境—“圓柱的體積該怎么求?”時(shí),能從圓的面積公式的推導(dǎo),根據(jù)已有的知識(shí)作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識(shí)經(jīng)驗(yàn)的不足,表達(dá)得不是很清晰。但學(xué)生的這些都是有價(jià)值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開(kāi)的圓柱體教具進(jìn)行驗(yàn)證,在討論聲中,學(xué)生獲得了真知?梢(jiàn),教師要保護(hù)學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點(diǎn)上,我對(duì)學(xué)生的'探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們?cè)O(shè)計(jì)教法的前提。
在引導(dǎo)學(xué)生解決“粉筆的體積”等這個(gè)問(wèn)題時(shí),課堂上有學(xué)生把它當(dāng)作圓柱體積來(lái)求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個(gè)大約的數(shù)值,所以用這種方法可以。但這種計(jì)算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說(shuō)明,就會(huì)給學(xué)生造成“圓臺(tái)的體積可以用這兩種方法來(lái)計(jì)算”的錯(cuò)誤認(rèn)識(shí),對(duì)學(xué)生的后續(xù)學(xué)習(xí)會(huì)造成一些不利的影響。我就這個(gè)問(wèn)題引導(dǎo)學(xué)生進(jìn)一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時(shí)會(huì)行不通,懂得知識(shí)并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進(jìn)一步學(xué)習(xí)積累經(jīng)驗(yàn)。學(xué)生在探索過(guò)程中,雖不能很快獲得結(jié)論性的知識(shí),但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進(jìn)了情感體驗(yàn)。這樣,既保護(hù)了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰(shuí)能說(shuō)讓學(xué)生經(jīng)歷這樣探究的過(guò)程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?
圓柱的體積教學(xué)反思5
本節(jié)課是學(xué)生在學(xué)習(xí)了長(zhǎng)方體和立方體的基礎(chǔ)上進(jìn)行教學(xué)的,它是一種比較常見(jiàn)的立體圖形,學(xué)生對(duì)圓柱都有初步的感性認(rèn)識(shí)。本節(jié)重點(diǎn)是圓柱的特征和圓柱側(cè)面積的計(jì)算。上課伊始,我先組織學(xué)生復(fù)習(xí)圓柱的特征、長(zhǎng)方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過(guò)程,由此引出圓柱的體積一課題。為了讓學(xué)生更好地理解和掌握?qǐng)A柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的`探究過(guò)程,通過(guò)一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂(lè)趣。
反思不足: 1、練習(xí)有些少。在學(xué)生練習(xí)這個(gè)環(huán)節(jié)中,最能反映學(xué)生掌握情況。應(yīng)該再?gòu)牟煌慕嵌仍O(shè)計(jì)多種練習(xí)題目來(lái)考察學(xué)生的知識(shí)掌握情況。2、本節(jié)課節(jié)奏較快,沒(méi)有去檢測(cè)一下學(xué)生每個(gè)環(huán)節(jié)掌握了沒(méi)有。3、數(shù)學(xué)要應(yīng)用于生活,應(yīng)該多出些有關(guān)生活實(shí)際的練習(xí)題。
圓柱的體積教學(xué)反思6
圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過(guò)對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過(guò)程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過(guò)想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問(wèn)題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來(lái)到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂(lè)于探索,善于探究。在圓的體積公式推導(dǎo)過(guò)程中,給予學(xué)生足夠的時(shí)間和空間,激發(fā)學(xué)生的探究的`欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個(gè)長(zhǎng)方體,就是把一個(gè)新圖形轉(zhuǎn)換成一個(gè)我們學(xué)習(xí)過(guò)的圖形,通過(guò)討論,爭(zhēng)鳴從而得出比較深層的數(shù)學(xué)知識(shí),這種思維的火花,我們老師應(yīng)及時(shí)捕捉,讓它開(kāi)得絢麗多彩,從而讓學(xué)生的個(gè)性能得到充分的培養(yǎng)。讓學(xué)生老師這樣才能寓教于樂(lè),從而達(dá)到了事半功倍的效果。在教此內(nèi)容時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、展示知識(shí)的發(fā)生過(guò)程,讓學(xué)生在參與中學(xué)習(xí)。
現(xiàn)代教育認(rèn)為課堂教學(xué)首先不是知識(shí)的傳遞過(guò)程,而是學(xué)生的發(fā)展過(guò)程;首先不是教師的教授過(guò)程,而是學(xué)生的學(xué)習(xí)過(guò)程;首先不是教師教會(huì)的過(guò)程,而是學(xué)生學(xué)會(huì)的過(guò)程。展開(kāi)部分,首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測(cè)圓柱體的體積可能等于底面積×高。在驗(yàn)證圓柱的體積是否與圓柱的底面積和高有關(guān)的過(guò)程中,我讓兩名學(xué)生到臺(tái)上演示,學(xué)生興致很高,都想到臺(tái)上進(jìn)行操作,被選出進(jìn)行演示的學(xué)生非常認(rèn)真地進(jìn)行操作,而其他學(xué)生也是非常認(rèn)真的進(jìn)行觀察。因此推導(dǎo)得出圓柱體積公式時(shí),學(xué)生感到非常好懂,也學(xué)得很輕松。
二、在討論交流中學(xué)習(xí)。
通過(guò)實(shí)驗(yàn)驗(yàn)證之后,讓學(xué)生看課件后,小小組進(jìn)行了如下討論:
。ǎ保┢闯傻慕崎L(zhǎng)方體體積與原來(lái)的圓柱體積有什么關(guān)系?
(2)拼成的近似長(zhǎng)方體的底面積與原來(lái)的圓柱底面積有什么關(guān)系?
(3)拼成的近似長(zhǎng)方體的高與原來(lái)的圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動(dòng)手操作、觀察以及交流討論的平臺(tái),而且有利于學(xué)生克服膽怯的心理障礙,大膽參與,發(fā)揮學(xué)生的主動(dòng)性,同時(shí)還能增強(qiáng)
團(tuán)隊(duì)協(xié)作意識(shí)。在這一環(huán)節(jié)中,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過(guò)程,發(fā)現(xiàn)了教學(xué)問(wèn)題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過(guò)程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:學(xué)生親身體驗(yàn)的感受不夠,因?yàn)閳A柱體積演示器只有一套,所以,只能是個(gè)別學(xué)生進(jìn)行操作,大部分學(xué)生只能遠(yuǎn)距離觀察。有些學(xué)生因看得不清楚而觀察、思考得不正確。如果條件允許,演示器多一些,能讓學(xué)生人人都進(jìn)行操作,我想學(xué)生的參與率、學(xué)生動(dòng)手能力、學(xué)生的觀察與思考、教學(xué)效果都會(huì)更好。
圓柱的體積教學(xué)反思7
本節(jié)課我注重知識(shí)的形成過(guò)程,使學(xué)生能主動(dòng)學(xué)習(xí)新知,突破難點(diǎn)、疑點(diǎn),能解決實(shí)際問(wèn)題。
1、在教學(xué)過(guò)程中,讓學(xué)生自主合作、探究,經(jīng)歷猜想、操作、驗(yàn)證、討論、歸納等數(shù)學(xué)活動(dòng)。比如,我從圓柱模型拼成長(zhǎng)方體入手,強(qiáng)調(diào)它們是等底等高長(zhǎng)方體。由長(zhǎng)方體體積公式V=Sh,猜想圓柱的體積公式。再通過(guò)學(xué)生的具體實(shí)際操作、小組合作探究,從而探索出圓柱體積公式,并掌握?qǐng)A柱體積的計(jì)算方法,能解決與圓柱體積計(jì)算相關(guān)的一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、在活動(dòng)中進(jìn)一步使學(xué)生體會(huì)“轉(zhuǎn)化”方法的價(jià)值,比如,回顧上學(xué)期所學(xué)的圓的面積推導(dǎo)公式,從而理解圓柱的底面積與長(zhǎng)方體底面積相等。這樣有利于培養(yǎng)學(xué)生應(yīng)用已有知識(shí)解決新問(wèn)題的'能力,發(fā)展空間觀念和初步的推理能力。
3、本節(jié)課中,我最大的遺憾就是沒(méi)有采用多媒體課件。但我認(rèn)為一節(jié)好課就非要使用多媒體課件嗎?其實(shí)不然。當(dāng)然,今天我在教學(xué)中,確實(shí)有許多的不足。比如,將圓柱體切割成若干等份,等份越多,分得越細(xì),就越接近于長(zhǎng)方體。倘若使用了多媒體課件演示,或許效果更明顯。
總之,今天教學(xué)中的不足,我會(huì)不斷改進(jìn)。既面向全體學(xué)生,又注重不同學(xué)生的不同發(fā)展,設(shè)計(jì)更精、更符合學(xué)生發(fā)展的梯度問(wèn)題,讓他們?cè)谟邢薜臅r(shí)空內(nèi)愉快學(xué)習(xí)、成長(zhǎng)!
圓柱的體積教學(xué)反思8
在教學(xué)圓柱的體積時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。通過(guò)這節(jié)
課的教學(xué),我覺(jué)得有以下幾個(gè)方面值得探討:
一、聯(lián)系舊知,導(dǎo)入新知。
圓柱的體積的導(dǎo)入,在回憶了長(zhǎng)方體、正方體體積計(jì)算方法,并強(qiáng)調(diào)長(zhǎng)方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過(guò)程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過(guò)的圖形呢?”激發(fā)學(xué)生好奇心,獨(dú)立思考問(wèn)題,探索問(wèn)題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過(guò)度自然,易接受新知。
二、動(dòng)手操作,探索新知。
學(xué)生在探究新知時(shí),教師要給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營(yíng)造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),學(xué)生親身參與操作,先用小刀把一塊月餅切成一個(gè)圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開(kāi),再拼起來(lái),圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體。找一找:這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長(zhǎng)方體的體積,從而推導(dǎo)出圓柱體積的計(jì)算公式。
三、課件展示,加深理解。
為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長(zhǎng)方形的過(guò)程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長(zhǎng)方體來(lái)得出體積公式。在推導(dǎo)圓柱體積公式的過(guò)程中,要求學(xué)生想象:“如果把圓柱的`底面平均分成32份、64份……切開(kāi)后拼成的物體會(huì)有什么變化?”學(xué)生雖然能說(shuō)出“拼成的物體越來(lái)越接近長(zhǎng)方體! 但是,到底拼成的圖形怎樣更接近長(zhǎng)方體?演示動(dòng)畫(huà)后,學(xué)生不僅對(duì)這個(gè)切拼過(guò)程一目了然,同時(shí)又加深理解了圓柱體轉(zhuǎn)化成近似長(zhǎng)方體的轉(zhuǎn)化方法。
四、分層練習(xí),發(fā)散思維。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識(shí),發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長(zhǎng)和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
但是不成功的地方也有,如學(xué)生在操作時(shí)有些學(xué)生拼的不是長(zhǎng)方體,而是其他的形狀,這里由于是上公開(kāi)課的原因就沒(méi)有有針對(duì)性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒(méi)有做到面向全體學(xué)生,這點(diǎn)我覺(jué)得在課堂上很難做到。
總之,通過(guò)這次的國(guó)培學(xué)習(xí),使我的思想認(rèn)識(shí)和課堂技能都有了新的認(rèn)識(shí),感謝國(guó)培!
教材作為教學(xué)的憑借與依據(jù),只不過(guò)是編者對(duì)學(xué)科知識(shí)、國(guó)家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時(shí)間與地域的影響,我們?cè)趫?zhí)行教材時(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,創(chuàng)造性地利用教材。
圓柱的體積教學(xué)反思9
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時(shí)讓學(xué)生通過(guò)實(shí)驗(yàn)來(lái)發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個(gè)關(guān)系計(jì)算圓錐的體積,讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。
我讓學(xué)生觀察,先猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實(shí)物圖形到空間圖形,采用對(duì)比的方法,不斷加深學(xué)生對(duì)形體的認(rèn)識(shí)。然后讓學(xué)生動(dòng)手實(shí)驗(yàn):有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計(jì)算的方法。讓孩子親歷教學(xué)的驗(yàn)證過(guò)程,從實(shí)驗(yàn)中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時(shí)候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時(shí)候,圓柱和圓錐又會(huì)有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺(jué)。對(duì)圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問(wèn)題,起到鞏固深化知識(shí)點(diǎn)的作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點(diǎn),一是在教學(xué)新課時(shí),沒(méi)有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實(shí)驗(yàn),而是通過(guò)師生交流、問(wèn)答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過(guò)實(shí)驗(yàn)來(lái)證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;二是在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過(guò)程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)
在教學(xué)之后感覺(jué)到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多,如果每個(gè)小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個(gè)學(xué)生都能真切的參與到探究中去,這樣每個(gè)學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個(gè)學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會(huì)了知識(shí),更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對(duì)練習(xí)較少,但在考試?yán)锩鎸?shí)際解決問(wèn)題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時(shí)練習(xí)。教學(xué)中的一組填空題,對(duì)于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價(jià)值。通過(guò)練習(xí),學(xué)生們明確了圓柱與等底等高的.圓錐體積和為4個(gè)圓錐的體積(或三分之四個(gè)圓柱的體積),而它們的體積相差2個(gè)圓錐的體積(或三分之二個(gè)圓柱的體積)??。掌握這些知識(shí)對(duì)于解決實(shí)際問(wèn)題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計(jì)算簡(jiǎn)便。
教學(xué)的最后我與孩子們一起通過(guò)大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計(jì)算是教學(xué)的重點(diǎn)和難點(diǎn),也是考試中學(xué)生容易丟分的危險(xiǎn)高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺(jué)方為最高層次!
圓柱的體積教學(xué)反思10
一、我在導(dǎo)入時(shí),突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來(lái)計(jì)算”,再接著馬上提問(wèn):“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過(guò)程,我覺(jué)得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過(guò)程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過(guò)度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。
二、我教學(xué)新課時(shí),實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí) 學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營(yíng)造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒(méi)有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過(guò)程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開(kāi),照課本上的圖拼起來(lái),圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的'哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒(méi)有親身參與操作,就缺乏情感空間感覺(jué)的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營(yíng)造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問(wèn)題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、我在 練習(xí)時(shí),形式多樣,層層遞進(jìn) ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無(wú)策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思。
圓柱的體積教學(xué)反思11
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了圓柱的體積計(jì)算公式的基礎(chǔ)上開(kāi)展的,大多數(shù)學(xué)庭作業(yè)已經(jīng)能夠熟練運(yùn)用體積公式計(jì)算直觀圓柱形容器的容積,這對(duì)本節(jié)課的后續(xù)計(jì)算莫定了良好基礎(chǔ)。但是對(duì)生通過(guò)上節(jié)課的課堂練習(xí)以及家于例7中非直觀圓柱形容器的容積計(jì)算,很多同學(xué)一開(kāi)始無(wú)處著手。通過(guò)課件將瓶子正置及倒置的情況分開(kāi)討論,然后逐步引導(dǎo),從而最終使學(xué)生明白該瓶子的容積在數(shù)值上就相當(dāng)于兩個(gè)小圓柱的體積。緊接著,兩個(gè)及時(shí)的模仿練習(xí)再次讓大家感受到解決此類問(wèn)題的關(guān)鍵就在于“轉(zhuǎn)換”和“構(gòu)建”,即:將無(wú)法直接計(jì)算體積的物體轉(zhuǎn)換成可計(jì)算體積的物體的體積;又或者將原不規(guī)則的物體換個(gè)角度或方向,從而便于我構(gòu)建新的可計(jì)算體積的物體,進(jìn)而得出解題思路和問(wèn)題答案。
對(duì)于“轉(zhuǎn)化”這種數(shù)學(xué)思想的.培養(yǎng),在教學(xué)過(guò)程中多進(jìn)行一些引導(dǎo)性提問(wèn),給于學(xué)生足夠的思考討論時(shí)間,盡量讓學(xué)生自己分析出思路,享受到成功的快樂(lè),從而增強(qiáng)學(xué)生的自信心,提高學(xué)習(xí)興趣。
圓柱的體積教學(xué)反思12
“圓柱體積計(jì)算公式的推導(dǎo)”是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”、“長(zhǎng)方體的體積”、“圓柱的認(rèn)識(shí)”等相關(guān)的形體知識(shí)的基礎(chǔ)上教學(xué)的。同時(shí)又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他形體知識(shí)做好充分準(zhǔn)備的一堂課。
課始,教師創(chuàng)設(shè)問(wèn)題情境,不斷地引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問(wèn)題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。
展開(kāi)部分,教師為學(xué)生提供了動(dòng)手操作、觀察以及交流討論的平臺(tái),讓學(xué)生在體驗(yàn)和探索空間與圖形的過(guò)程中不斷積累幾何知識(shí),以幫助學(xué)生理解現(xiàn)實(shí)的.三維世界,逐步發(fā)展其空間觀念。
練習(xí)安排注重密切聯(lián)系生活實(shí)際,讓學(xué)生運(yùn)用自己剛推導(dǎo)的圓柱體積計(jì)算公式解決引入環(huán)節(jié)中的兩個(gè)問(wèn)題,使其認(rèn)識(shí)數(shù)學(xué)的價(jià)值,切實(shí)體驗(yàn)到數(shù)學(xué)存在于自己的身邊,數(shù)學(xué)對(duì)于了解周?chē)澜绾徒鉀Q實(shí)際問(wèn)題是非常有作用的。
教師無(wú)論是導(dǎo)入環(huán)節(jié),還是新課部分都恰當(dāng)?shù)匾龑?dǎo)學(xué)生進(jìn)行知識(shí)遷移,充分地讓學(xué)生感受和體驗(yàn)“轉(zhuǎn)化”這一解決數(shù)學(xué)問(wèn)題重要的思想方法。同時(shí),還合理地運(yùn)用了多媒體技術(shù),形象生動(dòng)地展示了“分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體”,有機(jī)地滲透了極限的初步思想。
圓柱的體積教學(xué)反思13
本節(jié)課注重了數(shù)學(xué)思想方法和學(xué)習(xí)能力的培養(yǎng)。能力的發(fā)展決不等同于知識(shí)與技能的獲得。能力的形成是一個(gè)緩慢的過(guò)程,有其自身的特點(diǎn)和規(guī)律,它不是學(xué)生“懂”了,也不是學(xué)生“會(huì)”了,而是學(xué)生自己“悟”出了道理、規(guī)律和思考方法等。本節(jié)課沿著“猜想-驗(yàn)證”的學(xué)習(xí)流程進(jìn)行,給學(xué)生提供較充分的探索交流的空間,組織、引導(dǎo)學(xué)生“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過(guò)程”,并把數(shù)學(xué)推理能力有機(jī)地融合在這樣的'“過(guò)程”之中,有力地促使了學(xué)習(xí)改善學(xué)習(xí)方式。本課中學(xué)生“以舊推新”-大膽地進(jìn)行數(shù)學(xué)的猜想;“以新轉(zhuǎn)舊”-積極把新知識(shí)轉(zhuǎn)化為已能解決的舊問(wèn)題;“新舊交融”-合理地把新知識(shí)納入到原有的認(rèn)識(shí)結(jié)構(gòu)中,教學(xué)活動(dòng)成了學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。
整個(gè)教學(xué)過(guò)程是在“猜想-驗(yàn)證”的過(guò)程中進(jìn)行的,是讓學(xué)生在和已有知識(shí)經(jīng)驗(yàn)中體驗(yàn)和理解數(shù)學(xué),學(xué)生學(xué)會(huì)了思考、學(xué)會(huì)了解決問(wèn)題的策略,學(xué)出了自信。
圓柱的體積教學(xué)反思14
《圓柱的體積》一課是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”和“長(zhǎng)方體、正方體的體積”及圓柱的相關(guān)知識(shí)的基礎(chǔ)上教學(xué)的。
教學(xué)時(shí)我注重引導(dǎo)學(xué)生經(jīng)歷“類比猜想 驗(yàn)證說(shuō)明”的探索過(guò)程。由于圓柱和長(zhǎng)方體都是直柱體,長(zhǎng)方體的體積是底面積×高,因而我引導(dǎo)學(xué)生猜想圓柱的體積是否也可以用底面積×高來(lái)計(jì)算。接著引導(dǎo)學(xué)生想辦法證明自己的猜想,也就是驗(yàn)證說(shuō)明。重視學(xué)生已有的`經(jīng)驗(yàn),是新課改教學(xué)的重要理念,因而我引導(dǎo)學(xué)生回憶以前學(xué)習(xí)的“把未知的問(wèn)題轉(zhuǎn)化為已知的問(wèn)題”的方法,即“怎樣把圓柱轉(zhuǎn)化成已知的形體”的問(wèn)題。大部分學(xué)生都能想到把“圓柱轉(zhuǎn)化成長(zhǎng)方體”,接著就“怎樣將圓柱轉(zhuǎn)化成長(zhǎng)方體”這個(gè)問(wèn)題,讓他們觀察、研究、討論。學(xué)生受到以前“圓的面積”推導(dǎo)過(guò)程的啟發(fā),都知道應(yīng)把圓柱平均分成若干份切開(kāi),拼成近似的長(zhǎng)方體。由于學(xué)生沒(méi)有學(xué)具,因此我用教具演示整個(gè)過(guò)程,然后引導(dǎo)學(xué)生思考:長(zhǎng)方體底面的長(zhǎng)相當(dāng)于圓柱底面的什么?(周長(zhǎng)的一半即π r)長(zhǎng)方體底面的寬相當(dāng)于圓柱底面的什么?(圓的半徑r)再根據(jù)長(zhǎng)方體的面積公式推導(dǎo)出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學(xué)生親身經(jīng)歷知識(shí)的形成過(guò)程,為學(xué)生的主動(dòng)探索與發(fā)現(xiàn)提供了空間。
我覺(jué)得本課比較成功的一點(diǎn)是學(xué)生除了掌握本課的知識(shí)點(diǎn)外,還懂得了“類比猜想 驗(yàn)證說(shuō)明”的數(shù)學(xué)思想方法,可以說(shuō)是既授之于“魚(yú)”,又授之于“漁”。
圓柱的體積教學(xué)反思15
本節(jié)的教學(xué)重難點(diǎn)是:
1、探索并掌握?qǐng)A柱體積公式,能計(jì)算圓柱的體積。
2、在探索圓柱體積的過(guò)程中,進(jìn)一步體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)問(wèn)題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
教學(xué)方法:我利用課件演示和實(shí)物演示來(lái)解決。讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想。
成功之處:
1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說(shuō)理,調(diào)動(dòng)多種感觀參與學(xué)習(xí);
3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過(guò)程及知識(shí)的獲取過(guò)程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果。
不足之處:
1、個(gè)別學(xué)生還是對(duì)公式不會(huì)靈活應(yīng)用。
2、練習(xí)題有些多,應(yīng)選擇一些有代表性的'題,這樣小測(cè)驗(yàn)就能有充足的時(shí)間了。
3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯(cuò)的學(xué)生,應(yīng)知道為什么錯(cuò),及時(shí)在課堂評(píng)價(jià)出結(jié)果會(huì)更好。
4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會(huì)更好。
【圓柱的體積教學(xué)反思】相關(guān)文章:
圓柱的體積的教學(xué)反思02-27
圓柱的體積教學(xué)反思12-09
《圓柱的體積》教學(xué)反思10-26
圓柱的體積教學(xué)反思02-18
圓柱的體積教學(xué)反思15篇06-13
《圓柱體積》教學(xué)反思04-20
《圓柱的體積》教學(xué)反思15篇02-13
《圓柱體體積》教學(xué)反思02-19