3的倍數(shù)特征教學(xué)反思15篇
作為一位剛到崗的人民教師,課堂教學(xué)是我們的任務(wù)之一,在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,來參考自己需要的教學(xué)反思吧!下面是小編為大家收集的3的倍數(shù)特征教學(xué)反思,僅供參考,歡迎大家閱讀。
3的倍數(shù)特征教學(xué)反思1
《2、5、3倍數(shù)的特征練習(xí)課》是一堂練習(xí)課,本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了2,5,3倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。為以后學(xué)習(xí)分?jǐn)?shù),特別是約分、通分,需要以因數(shù)倍數(shù)的知識的概念為基礎(chǔ),到進(jìn)一步掌握公因數(shù)、最大公因數(shù)和公倍數(shù)、最小公倍數(shù)的概念,需要用到質(zhì)數(shù)、合數(shù)的概念,而最基礎(chǔ)的就是掌握2,5,3的倍數(shù)的特征。從開始學(xué)習(xí)2,5的倍數(shù)特征僅僅體現(xiàn)在個位數(shù)上,到學(xué)習(xí)3的倍數(shù)特征時從只看個位轉(zhuǎn)向考察各位上的數(shù)相加的和,學(xué)生已經(jīng)有了思路上的轉(zhuǎn)變,思維的轉(zhuǎn)折,觀察角度的改變,以此讓學(xué)生自主探索4的倍數(shù)特征,但由于與2,5,3的倍數(shù)特征又有些許不同,對學(xué)生依然有一定難度。
如果只是單一的做習(xí)題,勢必有學(xué)生會感到枯燥無味,這樣子學(xué)生的學(xué)習(xí)效果難以保障,對教師的功底與教學(xué)策略有很大的挑戰(zhàn)。因此課堂伊始,我直接開門見山式的先對前面學(xué)習(xí)的知識進(jìn)行復(fù)習(xí)梳理,接著利用學(xué)生感興趣也是正在使用著的工具——“手機(jī)”的鎖屏密碼為線索,通過提示讓學(xué)生解密碼的方式激發(fā)學(xué)生的'學(xué)習(xí)興趣,然后以破解后的密碼1080,導(dǎo)出本節(jié)課我們要重點探究的4的倍數(shù)特征。讓學(xué)生帶著趣味,自主的去探索。由于有了前面探索2,5,3倍數(shù)特征的基礎(chǔ)在,所以在探索4的倍數(shù)特征時放手讓學(xué)生通過操作,觀察,思考從而有所發(fā)現(xiàn),體驗探索的樂趣。接著通過計數(shù)器,讓學(xué)生明白判斷4的倍數(shù)特征背后的原理。最后在練習(xí)鞏固中,逐漸熟練應(yīng)用所學(xué)知識,感知數(shù)學(xué)知識和我們的生活緊密聯(lián)系。如何讓練習(xí)課不僅僅只是做練習(xí),讓學(xué)生能在練習(xí)中獲得對知識的理解以及思維上實質(zhì)的提升,仍然值得我在好好的去思考探索。
3的倍數(shù)特征教學(xué)反思2
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因為2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的.倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時,都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
3的倍數(shù)特征教學(xué)反思3
《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機(jī)結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。
一、引發(fā)猜想,產(chǎn)生沖突。
前一課時,學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復(fù)習(xí)舊知時,我也特意強(qiáng)調(diào)了這一點。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時,不少學(xué)生知識遷移,提出:個位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。
二、自主探究,建構(gòu)特征
找3 的倍數(shù)的`特征是本節(jié)課的難點,我處理這個難點時力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計數(shù)器,于是我給學(xué)生準(zhǔn)備了簡易計數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學(xué)生提出這個猜想后,全班學(xué)生再一次進(jìn)行驗證第二個猜想,這個驗證也是在突破難點,學(xué)生在驗證中掌握難點。同時,我也讓學(xué)生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學(xué)生的印象更深刻。這個教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。
在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會更多。
三、鞏固內(nèi)化,拓展提高。
在上述教學(xué)過程中,雖然每個同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學(xué)習(xí)產(chǎn)生深刻的影響。
在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認(rèn)為我們研究出的結(jié)論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學(xué)生縝密思考問題的意識和習(xí)慣。
3的倍數(shù)特征教學(xué)反思4
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的.倍數(shù)的特征的影響,有學(xué)生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測“個位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應(yīng)該說是了不起的。本課到這里都很順利,因為完全在我的預(yù)設(shè)之中。
下面進(jìn)入驗證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是數(shù)學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計了一系列習(xí)題,使學(xué)生得到鞏固提高。
3的倍數(shù)特征教學(xué)反思5
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時也參考了不少資料,大多數(shù)教學(xué)設(shè)計都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨作為一課時學(xué)習(xí)。最后的`環(huán)節(jié)達(dá)標(biāo)測試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點。
3的倍數(shù)特征教學(xué)反思6
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個特點:
1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運用特征進(jìn)行正確判斷,同時十分重視學(xué)生學(xué)習(xí)過程的體驗和方法的滲透,讓學(xué)生通過“猜測——驗證——提出新的假設(shè)——驗證”的探索過程來發(fā)現(xiàn)知識,獲得結(jié)論,并感悟方法。
2、理性處理教材,使教學(xué)內(nèi)容生活化。
教科書只是提供了學(xué)生學(xué)習(xí)活動的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計例題,通過用“0——9”十個數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識到現(xiàn)實生活中蘊藏著豐富的數(shù)學(xué)問題。開課時收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的'興趣,同時也縮短了教師和學(xué)生的距離,課后“你再長幾歲,這個歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。
3、著力改變學(xué)生的學(xué)習(xí)方式。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗證等獨立思考和小組討論等合作探究活動,獲得教學(xué)知識、感悟方法。如在課的第二階段,設(shè)計三個層次的教學(xué)活動,讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時也使學(xué)生品嘗了成功的喜悅。
4、合理定位教師角色,營造民主、和諧的學(xué)習(xí)氛圍。
課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒拥臅r間分配上,二是從分層探究、有針對性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,
3的倍數(shù)特征教學(xué)反思7
3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒有達(dá)到預(yù)想的效果。學(xué)生在匯報時能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報3的倍數(shù)的方法時,他們大多數(shù)是借助結(jié)論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進(jìn)行了及時的指導(dǎo),把孩子們需要匯報的過程進(jìn)行了詳細(xì)的說明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報百數(shù)表中前十個3的倍數(shù),讓大家觀察個位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個位上是0-9的任意一個數(shù),不能像2、5的倍數(shù)特征只看個位的特殊數(shù)就行了。因此只看個位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。
第三個環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個數(shù)的各位逐漸加一,十位逐漸減一,因此個位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個位上和十位上的數(shù)字之和是3的倍數(shù),那么這個數(shù)也是3的'倍數(shù)。
第四個環(huán)節(jié),其實并不是把3的倍數(shù)特征總結(jié)出來了就完成任務(wù)了。這個結(jié)論只是通過觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個結(jié)論進(jìn)行驗證,看是否符合。孩子們先試著寫幾個3的倍數(shù),老師羅列到黑板上,然后分別用用各個數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗證。驗證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。
到這里孩子們對于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來也顯得得心應(yīng)手。孩子體驗了結(jié)論得出的過程,每一個環(huán)節(jié)的設(shè)計都有他的意圖,在每個環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。
3的倍數(shù)特征教學(xué)反思8
《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動,注重學(xué)生實踐操作,展開探究活動,組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗證。三、總結(jié)提升,共同驗證。四、運用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復(fù)習(xí)了2、5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。
二、親身經(jīng)歷,探索規(guī)律。
本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)!苯處煂ⅰ皠邮?jǐn)[小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”的探究過程,實現(xiàn)課程、師生、知識等多層次的互動。
三、精心選題,鞏固新知。
習(xí)題的.設(shè)計力爭在突出重點,突破難點,遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會到數(shù)學(xué)在現(xiàn)實生活中作用和價值,初步學(xué)會用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。
四、回顧梳理,舉一反。
在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設(shè)計了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。
3的倍數(shù)特征教學(xué)反思9
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個別同學(xué)可能是受上節(jié)課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會到有幾顆珠子就是各個數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個數(shù)位上數(shù)的和是3的倍數(shù),那么這個數(shù)就是3的`倍數(shù)。說實話,學(xué)生對于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會到。
“想想做做”的五道題設(shè)計得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
3的倍數(shù)特征教學(xué)反思10
3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因為2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出(根據(jù)個位數(shù)的特點就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點預(yù)習(xí)題。
1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進(jìn)行思考:
(1)、3的.倍數(shù)與它個位上的數(shù)有關(guān)系嗎?
。2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
新課時讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個數(shù)的各個數(shù)位上的數(shù)字和是3的倍數(shù),這個數(shù)就是3的倍數(shù)
然后再讓每個同學(xué)任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。
經(jīng)過以上這些活動后學(xué)生都能對一個數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。
3的倍數(shù)特征教學(xué)反思11
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應(yīng)該說是了不起的。本課到這里都很順利,因為完全在我的預(yù)設(shè)之中。
下面進(jìn)入驗證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個學(xué)生顯得很興奮。隨后用5顆算珠實驗,發(fā)現(xiàn)擺出的.數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實驗,然后板書出每組的實驗結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個數(shù)所用算珠的顆數(shù),也是每個數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。可惜在這一點上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時,所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
3的倍數(shù)特征教學(xué)反思12
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點,是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的`探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因為3的倍數(shù)的特征的結(jié)論一但得出,運用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
3的倍數(shù)特征教學(xué)反思13
《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個知識點,是在學(xué)生已經(jīng)認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據(jù)個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的.猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗,看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗證等獨立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗到了學(xué)習(xí)成功的愉悅,同時也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
3的倍數(shù)特征教學(xué)反思14
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測到“個位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的'數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點是非常不錯的。
學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時,我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時,我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請結(jié)合舉例說說。”接下來將數(shù)擴(kuò)到百以上,通過各種方式舉正反例通過計算來驗證從而得出3的倍數(shù)的特征。最后比較驗證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時,我們也要質(zhì)疑,通過舉例來驗證。鼓勵學(xué)生對知識要敢于質(zhì)疑,敢于通過各種方式去驗證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
在教學(xué)中,我能有效獲取課堂生成資源,同時也注重方法的指導(dǎo)。比如:同桌舉例驗證時,涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時間,讓后問:還有更加簡便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時,我的課件中有個數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表揚了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯誤變成良好的教學(xué)資源。練習(xí)的設(shè)計業(yè)很有層次與梯度,聯(lián)系生活實際。
本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗證的過程中,學(xué)生的計算還不夠,學(xué)生親自從算中去體會更好;總結(jié)不太及時,從及時總結(jié)中提煉、提升會更好。
3的倍數(shù)特征教學(xué)反思15
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點?學(xué)生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時我心里有點擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個數(shù)的.數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗證一下,學(xué)生驗證后我又讓學(xué)生從100以外的數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時學(xué)生思考時就不會漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實踐中自己得出結(jié)論,才能牢固地掌握知識。
【3的倍數(shù)特征教學(xué)反思】相關(guān)文章:
倍數(shù)的特征教學(xué)反思07-18
《3的倍數(shù)的特征》教學(xué)反思 15篇09-25
《3的倍數(shù)的特征》教案02-27
《3的倍數(shù)的特征》教案07-01